
Load testing Documentum WDK apps with Apache
JMeter
Jeff Potts, Navigator Systems, Inc.

September, 2005

Introduction
Load testing WDK applications is a critical activity prior to any production rollout. The
problem is that, for the uninitiated, it seems harder than it ought to be. And the
commercial tools are expensive and complex. This can sometimes mean load testing is
performed too late in the game or not at all.

When a development team incorporates a tool like Apache JMeter into their process,
application problems can be identified earlier, tests can be repeated more often, and a
higher quality product can be delivered to the customer.

This article is a brief tutorial on using Apache JMeter to load test WDK applications.
WDK developers can use this article to learn how to perform their own load-testing when
formal load-testing isn't planned or isn't available, or to help tune their applications
before turning them over to the testing team. Although this is focused on JMeter, it might
help testing teams using other tools learn how to work with WDK applications.

This article does not discuss WDK application tuning or strategies for effective load
testing.

Why Apache JMeter?
I have been involved with many load-testing efforts from WDK applications to
mainframe applications, but I am, by no means, an expert on the subject. Nor did I do an
extensive comparison of freely-available web application load testing tools. I chose
JMeter because I've successfully worked with a lot of Apache technologies in the past.

With that said, JMeter is a feature-rich tool that is freely-available and easy to setup and
use. In addition to traditional web applications, you can also use JMeter to test JMS,
LDAP, Web Services, Java classes, and FTP. It seems flexible--it saves its output in an
open format and runs on any platform that has a JVM. So far I have found no reason to
spend a lot of time analyzing open source load testing tools.

Setup

Software infrastructure
For the examples in this article I've chosen to use the Documentum Administrator (DA)
WDK application, version 5.3 sp1 running on Tomcat 5.0.28 on RedHat Enterprise Linux
3. I figure DA is something everyone has to have somewhere. I chose 5.3 sp1 because it's

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

what I had handy. If you aren't on 5.3 sp1 yet this will give you a good excuse to practice
what you've learned!

Disclaimer! Meaningful results require a meaningful infrastructure. It is impossible to draw meaningful
conclusions based on your load-testing results if the load test was not executed against your production
infrastructure (or a testing infrastructure configured to match production). Obviously, script development
can take place on a very modest setup, but when you are ready to test for real, make sure you are
testing the app as it will exist in production.

The Documentum content server is also at version 5.3 sp1 running with Oracle 10g as the
backend. Both also reside on the Linux box. The Linux box is actually a VMWare image
running on my Windows XP machine.

Disclaimer! Do not run your content server, database server, and application server on the same
machine. For best performance these should each be on their own box. I run all three on the same
machine as a convenience and only for demonstration purposes.

Installing JMeter
Setting up and running JMeter is easy:

1. Download the zipped binary from http://jakarta.apache.org/jmeter/. The examples
use Apache JMeter 2.1.

2. Unzip the file to an install location of your choosing. On my windows laptop, I
run all of my pre-built Apache software out of /apache/build, so my JMeter install
directory is c:\apache\build\jakarta-jmeter-2.1.

3. On Windows, launch JMeter by running jmeter.bat.

If you see something like this, you're doing great so far.

Page 2
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

http://jakarta.apache.org/jmeter/

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

JMeter Terminology
Before we go further it would probably be helpful to discuss some basic terminology.
You might want to refer to the JMeter GUI as you read this section to follow along.

Thread: For all intents and purposes, a thread can be thought of as a user.

Thread Group: Think of a thread group as the scenario or use case being tested. A test
script that has a user log in to webtop, execute a search, and log out might be one thread
group. During a test there might be one or several hundred users executing a thread
group. The thread group might contain conditional logic that loops through parts of the
web application. I use the words "script" and "thread group" interchangeably. Script
seems more intuitive.

Test plan: A test plan is one or more thread groups. In a previous example we discussed
a thread group that performs a search in webtop. Suppose we also had a thread group that
performed a checkout on a randomly-selected object in the user's default cabinet and
another that simply browsed through all of the folders in a given cabinet. All three thread
groups could be included in a test plan to simulate the various activities different types of
users might perform over a period of time.

Sampler: A sampler is something that sends a request to a server. JMeter comes with
many different types of samplers. The sampler we'll use for testing our WDK application
is called HTTP Request.

Listener: A listener listens to the responses generated by samplers. Listeners can be used
to compile the results of the test run and to check that a sampler generates the expected
response.

Assertion: An assertion is used to specify what a response should or should not contain.
There are several different types of assertions depending on what kind of response you
are expecting and what sort of check you'd like to perform. If you want to specify that a
response should be of a given size, you would use the Size Assertion. If you want to
specify that a response should return in a given amount of time you would use the
Duration Assertion. In this tutorial we'll be checking the HTML that gets sent back to us
after we send a request to the server so we'll use Response Assertions.

Logic Controller: Logic controllers provide a mechanism for controlling the flow of the
thread group. Adding a logic controller to your thread group is like adding if-then or do-
while logic to a program. Your test script can make run-time decisions about how to
execute. Suppose you want to open every object in a list but you do not know how many
objects will be in the list ahead of time. A "Loop Controller" could be used to execute an
action (opening an object) a certain number of times without requiring you to hard-code
the requests into the script.

Workbench: The Workbench is like a working area. When recording scripts, JMeter
places the automatically-generated samplers under the workbench. They will not get

Page 3
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

executed as part of a thread group until you move them from the workbench to a thread
group.

Birds-eye view of the process
The overall process of setting up a script is:

1. Record a script.
2. Edit the script to remove hard-coded values.
3. Add assertions to validate that the test is getting the expected results.
4. Test the basic script.
5. Enhance the script with logic, randomness, etc.
6. Run the script, analyze the results, tune the application, and repeat.

Once created and tested, scripts can be saved, shared, and reused. Pieces of scripts can be
used in other scripts, and multiple scripts can be merged into a single test plan.

Example 1: Create a simple script
Now that JMeter is installed on your machine, you are familiar with the terminology, and
you understand a little bit about the process, it is time to get your hands dirty. Our
ultimate goal is to create a script that will log in to DA using a user selected from a list of
users, go to the home cabinet, and then open the properties on a randomly-selected
object. We'll start out with a more modest goal--creating a script that simply logs in to
DA as a hard-coded user, goes to the home cabinet, and then logs out. We'll do this in
five steps:

1. Record the requests,
2. Create the initial script with the recorded requests,
3. Test the script,
4. Add assertions,
5. Run the script under load.

If you would rather follow along than do this yourself, or if you get stuck and need help, I
have included links to the working files in the "Resources" section at the end of this
document.

Step 1: Recording the requests
A thread group is just a collection of samplers. In our case, the samplers are HTTP
requests. In setting up the thread group, one option is to manually create the list of URLs
that need to be requested. For a WDK application (or any moderately complex web
application, for that matter), this isn't practical.

JMeter gives us a much easier way to set up the thread group. It uses an HTTP Proxy
Server to listen to the requests being sent from the web browser to the server. It
automatically creates HTTP Request samplers for each request sent. We can then copy-
and-paste these into our thread group.

Page 4
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Let's set up our test plan and record the requests sent to DA during a login, home cabinet
browse, and logout.

1. Start JMeter if it isn't running already. You should see two empty nodes in the
tree: Test Plan and WorkBench.

2. Go ahead and name the test plan by clicking the Test Plan node and specifying a
name. We'll call it DA 5.3sp1. Note that fields are saved when you type the data.
There is no "OK" or "Apply" needed.

3. Next, set up the WorkBench to capture our requests. Right-click WorkBench then
click Add, Non-Test Elements, HTTP Proxy Server. We'll configure it
momentarily.

4. We need something to capture the results. Right-click WorkBench then click
Logic Controller, Recording Controller. All recorded requests will show up as
children of the Recording Controller node.

5. We could stop here and start recording. But we want our samplers to leverage
defaults for the app server host name and port, so we need to add something to
our workbench to handle that. Right-click WorkBench then click Add, Config
Element, HTTP Request Defaults. If you don't use an HTTP Request Defaults
config element, all samplers will have the server name specified instead of having
them in one place.

6. We might also want to make the username, password, and docbase variable. If
you define those ahead of time, JMeter will automatically substitute the matching
strings in the response with the variable names. Right-click WorkBench then click
Add, Config Element, User Defined Variables.

There should be four nodes under WorkBench: HTTP Proxy Server, Recording
Controller, and HTTP Request Defaults. Now we need to do some configuration.

7. Click HTTP Proxy Server. The default port is 8080. If your app server is running
on the same machine as JMeter and it also uses 8080, you're obviously going to
have to pick an unused port.

8. Uncheck "Capture HTTP Headers" and "Set Keep-Alive". We don't need those.
9. Change the Grouping dropdown to "Add separators between groups". This will

make it a little bit easier to look through the list of requests that get captured.
10. The Patterns to Include/Exclude areas are used to tell JMeter which requests are

important or unimportant. For our purposes we don't want to capture requests for
static HTML files, GIFs, CSS files, JS files, or ICO files. Patterns are specified
using regular expressions. For help using regular expressions, see the "Resources"
section at the end of this article. Use the Add button to add each of the following
to the list of Patterns to Exclude:

.*\.jpg

.*\.png

.*\.gif

.*\.ico

.*\.css

.*\.js

Page 5
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

.*\.htm
11. Click HTTP Request Defaults. Specify the following:

Protocol: http
Server Name or IP: The name of the application server where DA runs. I'll
use dctmnx01.
Path: The virtual directory for my installation of Documentum Administrator
is "/da".
Port Number: My Tomcat application server listens on port 8080.

12. Click User Defined Variables. Use the Add button to add username, password,
and docbase variables with the appropriate values.

That's it. We're ready to record the requests.

TIP! If you'd like to save this setup for later, right click WorkBench then click Save As. Note that when
you save the test plan it does not save the WorkBench. Later, when you are working in a test plan and
you want your saved WorkBench settings, don't do a File, Open. Instead, do a File, Merge and select the
saved WorkBench file.

Now we'll start the proxy server, configure the browser to use the proxy, and log in to
DA.

TIP! It's a good idea to shut down anything that might make auto-refreshed requests. An example is
Microsoft Outlook Webmail. I've also seen deli.cio.us bookmarklets make calls that get captured by the
proxy.

1. Click HTTP Proxy Server. Click the Start button at the bottom of the page. The
only indicator that the proxy is running is that the start button is disabled.

2. Start a browser. Firefox is supported with WDK 5.3 sp1 so that's what I'll use but
that is not a requirement. Change the proxy settings to point to localhost and the
port you specified on the proxy server configuration.

3. Specify the URL for DA. Typically, this would be your virtual root ("/da" in my
case). But that actually redirects to the main component. We don't need the
redirect in our test so specify the actual DA URL which, in my case, would be:

http://dctmnx01:8080/da/component/main

4. Login using the username, password, and docbase values specified in the HTTP
Request Defaults configuration.

5. You'll notice that when the proxy is turned on the login won't redirect to the main
component. That's because WDK handles this through JavaScript. We're already
logged in so simply specify the DA main component URL again. Now the start
page for DA should appear.

6. Click the Home Cabinet link.
7. Click Logout.
8. Change the proxy settings to not use the proxy server. I do this to prevent any

bookmarklets from making requests that clutter my recording controller.

Page 6
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

http://dctmnx01:8080/da/component/main

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

9. Switch back over to JMeter. Notice that the Recording Controller node has
children. Expand the node. You should see about 20 samplers—one for each
HTTP request that was sent to the application server.

10. Click the sampler named "/da/wdk/system/login/login.jsp". Notice the web server
and protocol fields are blank. That's because you specified default values for these
in your HTTP Request Defaults node. If you skipped that step, each sampler will
have the appropriate values automatically populated which would make your
script less flexible.

11. Notice the request parameters named "Login_username_0", "Login_password_0",
and "Login_docbase_0". JMeter automatically changed the values from the hard-
coded strings you specified to the variables you set up in the User Defined
Variables node.

12. Finally, take special note of two parameters: "__dmfRequestId" and
"__dmfSerialNumber". These two parameters cannot be hard-coded when you re-
run the script. And, the value depends on previous requests. The tedious part of
scripting WDK applications is making sure you are sending the correct
dmfRequestId with each request.

At this point, your JMeter WorkBench should look something like this:

Page 7
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

If so, you are ready to move on to the next step which involves preparing the requests to
be replayed back as a test script.

Step 2: Create the script using the recorded requests
So far we've configured an HTTP Proxy Server to capture the requests during a simple
login, home cabinet view, and logout. Now we're ready to turn our raw set of requests
into a functioning test script by adding variables for the dmfRequestId and the
dmfSerialNum. We'll also add assertions so we can be alerted when something goes
wrong with the test.

1. Right-click the Test Plan node then click Add, Thread Group. We'll configure this
later.

Page 8
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

2. We'll use the same request defaults and user-defined variables when we run our
script so copy and paste those two nodes from the WorkBench to the Thread
Group.

3. Web applications maintain state through cookies or, when cookies aren't
available, URL re-writing. We want our script to handle cookies. Right-click
Thread Group then click Add, Config Element, HTTP Cookie Manager.

4. We'll start our script with the raw set of requests captured by the Recording
Controller. Select all of the child nodes under WorkBench, Recording Controller,
then right-click the selected nodes and click Copy. Right-click Thread Group then
click Paste to copy-and-paste the samplers to our thread group.

Recall that the dmfRequestId parameter that gets sent to the login.jsp page is
hard-coded. We need to use the previous request to figure out what that value
(and the value for dmfSerialNum) should be. Go to your browser (the proxy does
not need to be on) and go to the /da/component/main. You should see the login
page. View the source for the page and search for dmfRequestId. Do the same for
dmfSerialNum. You should find text that looks like:

<input type='hidden' name='__dmfRequestId'
value='__client1~~1'>
<input type='hidden' name='__dmfSerialNumber' value='0'>

So when the main page comes up we need to parse the response so we can snag
these values and pass them as parameters to the login page. To do this, we'll use a
regular expression. If your regular expressions are rusty refer to the "Resources"
section at the end of this article. The appropriate regular expressions for these two
values look like:

<input type='hidden' name='__dmfRequestId'
value='(__client[0-9]*~~[0-9]*)'>
<input type='hidden' name='__dmfSerialNumber' value='([0-
9]*)'>

TIP! If you've got Perl handy, you can test out your regular expressions quickly and easily. Here's a
three-line Perl script that tests the dmfSerialNumber regex:

 $testString = "<input type='hidden' name='__dmfSerialNumber'
value='0'>";
 ($result) = $testString =~ /<input type='hidden'
name='__dmfSerialNumber' value='([0-9]*)'>/;
 print $result;

6. Now that we've got our regular expressions figured out let's parse the response
and pass the parsed value to the next request. Right-click the sampler named
"/da/component/main" then click Add, Post-Processor, Regular Expression
Extractor. Specify the following:

Name: getRequestId (This is an arbitrary name but I like to use something
descriptive here because we may have several).

Page 9
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Reference name: requestId (This is the variable name for the value
extracted).
Regular expression: <input type='hidden' name='__dmfRequestId'
value='(__client[0-9]*~~[0-9]*)'>
Template: 1 (This is a regular expression back-reference to the first
"group" in our regex).
Default value: leave blank

7. Repeat the previous step for the dmfSerialNumber:
Name: getSerialNumber
Reference name: serialNumber
Regular expression: <input type='hidden' name='__dmfSerialNumber'
value='([0-9]*)'>
Template: 1
Default value: leave blank

8. Now we can replace the hard-coded values in the login.jsp request with the
reference names. Click the sampler named "/da/wdk/system/login/login.jsp".
Change the value for __dmfRequestId to "${requestId}" (without the quotes).
Change the value for __dmfSerialNumber to "${serialNumber}" (again, without
the quotes).

The next request with a hard-coded dmfRequestId is
"/da/webtop/classic/emptyContentClassic.jsp". The key question is, "Where am I
supposed to get the request ID this request is expecting?" The answer is that the
WDK ties request IDs to frames. If you can figure out which frame the request is
happening in, you simply find the previous request for that frame, drop in a regular
expression extractor and you're all set. The following steps simply repeat this exercise
for the remaining hard-coded dmfRequestId and dmfSerialNumber values.

9. Copy the getRequestId and getSerialNumber nodes we created previously and
paste them into the Sampler named
"/da/webtop/classic/emptyContentClassic.jsp".

10. Change the name and reference name to append the word "Content". We need the
variable name to be unique because we may be juggling many request IDs. I
chose "Content" because this request is taking place in the content frame.

11. Click the sampler named "/da/webtop/classic/emptyContentClassic.jsp". Change
the value for __dmfRequestId to "${requestIdContent}" (without the quotes).
Change the value for __dmfSerialNumber to "${serialNumberContent}" (again,
without the quotes).

12. Copy the getRequestId and getSerialNumber nodes we created previously and
paste them into the Sampler named "/da/component/browsertree".

13. Change the name and reference name to append the word "Tree".
14. Click the sampler named "/da/webtop/classic/browsertree/browsertree.jsp".

Change the value for __dmfRequestId to "${requestIdTree}" (without the quotes).
Change the value for __dmfSerialNumber to "${serialNumberTree}" (again,
without the quotes).

Page 10
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

15. Copy the getRequestId and getSerialNumber nodes we created previously and
paste them into the Sampler named /da/webtop/classic/emptyContentClassic.jsp".

16. Click the sampler named "/da/rpm/admin/favorites/administrationfavorites.jsp".
Change the value for __dmfRequestId to "${requestIdContent}" (without the
quotes). Change the value for __dmfSerialNumber to "${serialNumberContent}"
(again, without the quotes).

17. Copy the getRequestId and getSerialNumber nodes we created previously and
paste them into the Sampler named "/da/component/titlebar".

18. Change the name and reference name to append the word "TitleBar".
19. Click the sampler named "/da/webtop/classic/browsertree/browsertree.jsp".

Change the value for __dmfRequestId to "${requestIdTitleBar}" (without the
quotes). Change the value for __dmfSerialNumber to "${serialNumberTitleBar}"
(again, without the quotes).

Now, before you do another thing, save your work! Click the Test Plan node first. Then,
click File, Save.

Step 3: Test the script
You might think the next step is to run the script and you're partially right. The script will
run as it is. But if we ran it right now we'd have no way of knowing whether or not the
test was actually doing what we wanted it to do. The quickest way to test out the script is
to add a listener that will show us the requests and the results. Let's do that, run the test,
and if everything is okay we will then add assertions to automate error checking.

1. Click Thread Group. Note that the number of threads (number of users) is set to 1
by default. The ramp-up period (the time it takes to log in all of the users) is set to
1 by default. The loop count (how many times the thread group will be executed)
is set to 1 by default. Leave these alone for now. I just wanted you to know they
were there.

2. Right-click Thread Group then click Add, Listener, View Results Tree. The new
listener will get added below the samplers. You can drag it up to the top of the
tree to make it easier to work with. We'll be referring to it a lot.

3. Run the script. Click Run, Start. The small square in the upper right-hand corner
of the JMeter GUI will turn green while the test is running and back to grey when
the test is complete.

4. Click the View Results Tree. The requests sent to the server are listed. For each
request you can see the response headers, the request that was sent, and the
response data. The response data can be viewed as the raw text that came back
from the server or JMeter can try to render it. Are any of the requests in red text?
If so you've got errors.

TIP! If any of your requests failed they were most likely caused by bad dmfRequestId values. You can
verify this by looking at the application server log. Foul-ups with the dmfRequestId cause a "component
base has not been established" exception. In the View Request Tree look at the request data for the
failed sampler. Here are some things to check:

- Is the dmfRequestId specified? If the variable name appears in the request you may have mis-typed
the variable name on the sampler request parameter.

Page 11
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

- If the request ID appears make sure it is in the right format. If the format is wrong the you may have
a problem with the regex.

- If the request ID appears to be properly-formatted maybe it is the wrong request ID. Double-check
that you have parsed the appropriate response.

If you get tired of debugging and are ready to give up, download the article example files
(see "Resources"), open the test plan file and run the script. Be sure to change the HTTP
Request Defaults and the User Defined Variables to match your environment.

Step 4: Add assertions
Now that your script is running without errors it is time to add assertions. Assertions tell
JMeter how to check for valid responses. You probably noticed when you did your test
run that the View Results Tree told you when it received Error 500 messages (unless you
were lucky enough to run error free the first time out!). But it is quite possible that an
application will respond with an unexpected result that does not necessarily throw an
application server error response. That is where assertions come in.

Let's add an assertion for the login page, the main DA page, and the Home Cabinet.

1. Right-click the sampler named "/da/component/main" then click Add, Assertion,
Response Assertion.

2. In Patterns to Test add "Documentum Administrator Login" (without the quotes).
3. Right-click the sampler named "/da/webtop/classic/emptyContentClassic.jsp" then

click Add, Assertion, Response Assertion.
4. In Patterns to Test add "System Information".
5. Right-click the sampler named

"/da/rpm/admin/favorites/administrationfavorites.jsp" then click Add, Assertion,
Response Assertion.

6. In Patterns to Test add "Workspace Customizations".
7. If we do nothing else we won't know when an assertion fails. To listen for

assertion failures add an Assertion Listener. Right-click Thread Group then click
Add, Listener, Assertion Results.

Now run your script again. If any of the assertions fail, a message will show up in the
Assertion Results listener. If you aren't convinced that the assertions feature works, try
adding a pattern to one of your assertions that you know will not come back in the
response.

TIP! On the Assertion Results listener check the "Log Errors Only" checkbox to avoid seeing successful
requests.

Step 5: Run the script under load
Our script runs successfully with a single user one time through. Our assertions are
making sure that the expected responses are being returned. Now it is time to put the hurt
on the app server by cranking up the load.

Page 12
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Disclaimer! Running a surprise load test on a corporate network is not a good way to make friends.
Documentum footprints are typically highly-distributed and, in large companies, cross many different
organizations. If you are running against a shared infrastructure make sure you have coordinated with
teams responsible for all aspects of the infrastructure.

Running the script under load involves deciding how many concurrent users to run, how
long the test should last, and how the results should be tracked.

1. Set the thread group parameters. These parameters tell JMeter how many users to
run and how long the test should run. We'll start with a meager load of 5 users.
We do not want all 5 users to log in at the same time. Instead we'll spread the
logins over 10 seconds (or one new user every two seconds). We want the load to
be sustained for a while so we will have JMeter run through our script 5 times.
Click Thread Group. Specify the following:

a. Number of Threads: 5
b. Ramp-up Period: 10
c. Loop count: 5

2. Unless told otherwise, JMeter will send the requests to the server as fast as it can.
There are two problems with this. First, it doesn't simulate reality. Second, the
application server might not be able to keep up. Timers can be used to address
this. There are all sorts of timers available. We'll use a simple Constant Timer to
cause the script to pause for a specific time between every request. Right-click
Thread Group then click Add, Timer, Constant Timer. Take the default of 300
milliseconds.

3. Running a load test without capturing performance metrics is kind of pointless.
JMeter offers a variety of listeners to capture metrics. The graphical listeners have
the potential to slow down test script performance. We'll use a simple table
listener. Right click Thread Group then click Add, Listener, View Results in
Table.

4. Saving the responses adds too much overhead. Rather than removing the View
Results Tree we will simply disable it. That way if we need to debug later we can
simply enable it. Right-click View Results Tree and click Disable.

5. Clear the results from the previous script runs by clicking Run, Clear All (or use
ctrl+e).

6. Run the script by clicking Run, Start (or use ctrl+r). Watch the View Results in
Table. Every request and its response time will be listed. The bottom shows the
average and standard deviation.

Make sure when you run your test that you check the Assertion Results listener. If the
assertions are failing it could mean that the server is overwhelmed.

It may be tempting to run hundreds of test users from your workstation. At some point
the local machine will be unable to service requests fast enough. The more threads you
run on a single-CPU machine the longer they have to wait for CPU time. Eventually the
response times degrade because of the local machine, not the web application. JMeter can
handle this, though. See "Generating high-volume loads with multiple machines".

Page 13
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Examples 2 & 3: Enhancing the thread group
For the rest of the article I will avoid the step-by-step format. Instead I will provide the
general steps that need to happen to add the functionality. If you get stuck, download the
example files for help.

Example 2: Running multiple threads as different users
It is generally a bad idea to test concurrent users with the same user name. For starters, it
just is not a realistic test. Depending on the application being tested you may see some
interesting results when two users attempt to work with the same object at the same time.
To avoid this, use different user names and let each user work with their own set of
objects.

For this section I am assuming the docbase being tested has a set of test users named
tuserX where X is a number from 1 through 5. Each user has their own Home Cabinet
and each home cabinet has its own set of test documents named test_doc_X.txt where X
is a number from 1 through 5.

Once the test users and test data are in place, all we have to do is tell JMeter to use it.
Add a new User Parameters pre-processor to the node named
"/da/wdk/system/login/login.jsp". Use the "Add User" button to add four new user
columns. Use the "Add Variable" button to add a new variable row. Remember the
userName variable we defined? We'll use that with five different values for each user
corresponding to each test user name.

Your user parameters node should look like this:

Now, when you run your script, if you use the same number of threads as the number of
user columns in your user parameters node, each thread will use its own user.

Before running the test, though, let's add a new assertion to validate that the test is
running properly. To the node named
"/da/rpm/admin/favorites/administrationfavorites.jsp" add a new Response Assertion with
two patterns. One pattern is the username. The other is for the file name. The two patterns
are:

${userName}

Page 14
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

test_doc_[0-9].txt

This assertion shows that you can test using variable substitution and shows how you can
use regular expressions to match string patterns.

Test the script by running a single time through (loop count = 1) and five threads. All
assertions should pass with flying colors.

Example 3: Randomly selecting an object properties link
Running a test that selects the same object repeatedly is not a realistic test. It also makes
the script somewhat inflexible and difficult to maintain. It may be tough to determine
which objects will be available for the user when the script is written. To address this we
will enhance our current script to randomly choose an object in their home cabinet.

First, get the script to select a hard-coded object properties link. After that is working we
can randomize it. A good approach is to add a couple of separators to mark where you are
going to add the new requests. In this case it will be between the node named
"/da/rpm/admin/favorites/administrationfavorites.jsp" and
"/da/webtop/titlebar/titlebar.jsp". Use the HTTP Proxy Server and the Recording
Controller to capture the requests and add them to your thread group. Hint: I added five
new requests to the script.

Now that the requests have been added you must replace the hard-coded dmfRequestId
and dmfSerialNum parameters. Remember that request IDs are tied to frames. A new
frame is used with the properties page. So pay attention to where you are retrieving your
request ID and which request it is getting passed to.

There's one more spot that will trip you up. When you follow the object properties link,
WDK uses JavaScript to open the appropriate URL. That means your HTTP Proxy Server
may not have caught the proper request. You will have to parse the JavaScript that comes
back from the properties icon click to figure out the right URL to open up using a
Regular Expression Extractor like we've done in the past for request ID and serial
number.

This screenshot shows the new requests necessary to open the properties page (with new
assertions to check the results), the getUrl regex expression extractor, and the result of the
extraction being used in the next request by placing the ${nextUrl} variable in the path
field.

Page 15
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

If you get stuck enable the View Results Tree and start debugging.

To know how to make the object get picked at random you have to know a bit about how
WDK works. The properties icon (the blue circle with the "I") is actually a control.
Clicking the control fires an action. The server finds out what happened by looking at the
"__dmfControl" request parameter. The parameter value includes a number. The number
is a zero-based index that tells the server side which object was clicked. To make the
script pick an object at random we simply need to parse the object list HTML for all
matching server event parameters and then randomly pick one to use.

The properties link looks like this:

<a href='#'
onclick='setKeys(event);safeCall(postServerEvent,"HomeCabinetClas
sicView_0","HomeCabinetClassicView_propact_0","HomeCabinetClassic
View_0","onaction","__dmfArgsId","0");return false;' ><span
title='Properties'><img class='actionimage'
name='HomeCabinetClassicView_propact_0'
src='/da/webcomponent/theme/documentum/icons/info.gif' width=16
height=16 border=0 alt='Properties'/>

The easiest thing to match on is the image name attribute. The regular expression would
look like this:

Page 16
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

<img class='actionimage'
name='(HomeCabinetClassicView_propact_[0-9]*)'

The full value for dmfControl needs to look like this:

HomeCabinetClassicView_0_HomeCabinetClassicView_propact_4

So, we'll simply prepend the string, "HomeCabinetClassicView_0_" to our regex result in
extractor template.

Fortunately, JMeter makes it easy to randomly pick the object once we've defined the
regex extractor. If the "Match no." is set to 0, JMeter will randomly pick from all of the
regular expression matches on the page.

To re-cap, add a regular expression extractor to the node named
"/da/rpm/admin/favorites/administrationfavorites.jsp" that looks like this:

In the node named "/da/webtop/classic/homecabinet/homecabinet_classic.jsp", replace
the current value for the dmfControl request parameter with the ${objectLink} variable.

When the thread group runs JMeter will randomly "click" on one of the five test
documents in the user's home cabinet.

Generating high-volume loads with multiple machines
As previously mentioned, JMeter can be used to generate significant loads against a web
application, but at some point, a single machine is not able to generate sufficient traffic.
A similar problem is when the person executing the test is too "far" from the application
server due to network latency.

JMeter addresses this by allowing tests to be run remotely. Multiple machines can be
used to generate the requests. A single machine coordinates the script execution and
listens for and compiles test results.

Page 17
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Do the following to set this up:
1. Install JMeter on the boxes that will be generating the requests against the web

application. (I'll call these the "remote" boxes.).
2. Run the jmeter-server script on each remote box as well as the machine that will

be coordinating the test (I'll call this the "local" box).
3. Edit the jmeter.properties file on the local box. Set the remote_hosts parameter to

a comma-separated list of the fully-qualified hosts that will be generating requests
including "localhost" if the local machine will also be used to generate traffic.

4. Start the JMeter GUI on the local box.
5. Click Run, Remote Start All to start the test script on all boxes.

Here are a few things to watch out for:
- Make sure all boxes can resolve the appropriate host names. This includes resolving

the application server's host name from the remote testing boxes. Obviously, if the
remote boxes cannot find the application server it won't be much of a test.

- In jmeter.properties, don't specify localhost as a remote host unless you want your
local box to execute test scripts during a "remote start all". If the local box is "close"
to the web application server, and there are not a lot of other processes running, this
might be okay. If the local machine is VPN'd from home you probably do not want
the local machine generating traffic.

- On Linux, the Sun JVM has a bug in which the hostname resolves to the loopback IP
address instead of the actual IP address of the machine. Google can help you fix this.
Just know that JMeter uses RMI to communicate between the local JMeter GUI and
the remote boxes and that RMI requires fully-qualified host names that can be
resolved by both ends of the communication.

I do not have a good rule-of-thumb for knowing how many users can be run on a given
JMeter instance. You will have to do some experimentation to figure out what works best
for you given your infrastructure.

Summary
This article showed how Apache JMeter, a powerful open-source tool for load-testing,
can be used to test Documentum WDK applications. It barely scratched the surface with
regard to how complex and robust test plans can be. Hopefully you've seen enough that
you will consider using the tool on your next project.

Resources
Files used in this example are in: wdk_examples.zip. The zip includes:

• Sample workbench file (workbench.jmx)
• Example 1: Recording a simple script (DA53sp1_simple.jmx)
• Example 2: Running multiple threads as different users (DA53sp1_users.jmx)
• Example 3a: Selecting a hard-coded object link (DA53sp1_hc_props.jmx)
• Example 3b: Randomly selecting an object properties link

(DA53sp1_rnd_props.jmx)
Page 18

© 2005 Navigator Systems, Inc.
http://www.navigatorsystems.com

http://ecmarchitect.com/wp-images/Load_testing_Documentum_WDK/wdk_examples.zip

Load testing Documentum WDK Apps with Apache JMeter
Jeff Potts, Navigator Systems, Inc.

Apache JMeter Home Page
http://jakarta.apache.org/jmeter/

JMeter Wiki
http://wiki.apache.org/jakarta-jmeter/

"Tips for Developing WDK Benchmarks" Documentum white paper
Available for download to registered users at http://developer.documentum.com

Webtop 5.2.5 LoadRunner Scripts (BMKit 2.0)
Available for download to registered users at http://developer.documentum.com

Regular Expressions help
http://www.regular-expressions.info/quickstart.html

Page 19
© 2005 Navigator Systems, Inc.

http://www.navigatorsystems.com

http://www.regular-expressions.info/quickstart.html
http://developer.documentum.com/
http://developer.documentum.com/
http://wiki.apache.org/jakarta-jmeter/
http://jakarta.apache.org/jmeter/

