
ecmarchitect.com

Alfresco Developer Series
Developing Custom Actions

2nd Edition
January, 2012

Jeff Potts

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

http://www.ecmarchitect.com/
http://www.ecmarchitect.com/

ecmarchitect.com

Alfresco Developer Series
Developing Custom Actions

2nd Edition
January, 2012

Jeff Potts

About the Second Edition

This tutorial was originally written in January of 2007. I think it was actually the first Alfresco tutorial
I wrote even though I think of “Custom Content Types” as the logical place to start from the
perspective of someone ramping up on the platform.

The original version was very short—it focused only on how to make a custom action configurable
within a rule in Alfresco Explorer.

The second edition greatly expands on the first by building on the SomeCo example started in the
“Custom Content Types” tutorial and adding a second action example that sets a custom property
defined in the example SomeCo model.

Similar to the second edition of “content types”, my main intent of writing this revision was to
illustrate how to use the action configuration new to Alfresco 4 to wire the actions into the Alfresco
Share user interface.

The old Alfresco Explorer instructions still exist. I've moved those to the Appendix. They work fine in
Alfresco 4, so if you are stuck on Explorer, but have upgraded to Alfresco 4, you'll still find it useful.

The new action-related extension points in Alfresco 4 make it much, much easier to add shortcuts and
other usability improvements to Share with drastically less code than you'd need to do the same thing
in older versions. After you read this tutorial, you'll be able to add all sorts of cool things to your
Alfresco installation. If you do, I hope you consider packaging them up as an AMP, putting the source
somewhere public, and listing them on http://addons.alfresco.com.

As always, please let me know if you found this helpful. Any and all feedback is welcome on my blog
at http://ecmarchitect.com.

Have fun!

Jeff

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 2 of 40

http://ecmarchitect.com/
http://ecmarchitect.com/
http://addons.alfresco.com/

ecmarchitect.com

Table of Contents

About the Second Edition... 2
Introduction... 5

Setup.. 6
Part 1: Implementing an Action... 6

What is an Action?.. 6
Example 1: Move Replaced..9
Example 2: Set Web Flag... 10

Implementing the Move Replaced Action...10
Step 1: Write the action executer class... 11
Step 2: Configure the action in Spring... 12

Implementing the Set Web Flag action... 13
Step 1: Write the SetWebFlag action executer class...13
Step 2: Configure the action in Spring... 15

Java versus Server-side JavaScript..15
Part 2: Configuring the Action's Front-End in Share... 15

Configuring the Replaceable Aspect in Share...16
Configuring the Move Replaced Rule Action in Share...17

Step 1: Specify the custom client-side component and set the action order...................................17
Step 2: Add a reference to the custom client-side JavaScript file to the head................................18
Step 3: Implement the custom client-side JavaScript component.. 19

Configuring the Set Web Flag UI Action in Share..21
Step 1: Create two new repository tier actions... 22
Step 2: Update share-config-custom.xml with the action configuration.. 23
Step 3: Create icons and localize the strings.. 24

Finishing Touches: Evaluators & Indicators... 25
Step 1: Declare a new evaluator in Spring config.. 25
Step 2: Update the action config in share-config-custom.xml... 26
Step 3: Update the share-config-custom.xml file to show a document library indicator...............27
Deploy & Test...27

Conclusion... 29
Where to find more information..29
About the Author...29

Appendix..30
Configuring the Replaceable Aspect in Explorer..30
Configuring the Move Replaced Rule Action in Explorer..30

Step 1: Create an action handler class.. 31
Step 2: Create a corresponding JSP page... 31
Step 3: Localize the Move Replaced Action.. 32

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 3 of 40

http://ecmarchitect.com/

ecmarchitect.com
Configuring the Set Web Flag UI Action in Explorer... 34

Step 1: Create a JSF-managed Bean...34
Update web-client-config-custom.xml with the new UI action...36
Localizing the Set Web Flag action.. 38

Configuring the Evaluator to Show/Hide the Set Web Flag UI Action in Explorer...........................38

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 4 of 40

http://ecmarchitect.com/

ecmarchitect.com

Introduction

Alfresco is a flexible platform for developing content management applications. Clients have several
options to consider when selecting a user interface approach. Alfresco comes with two web clients that
can be used as-is or customized. Alternatively, developers can create custom applications using the
Content Management Interoperability Services (CMIS) API, web scripts, the web services API or the
foundation API.

Many times, the out-of-the-box web client is sufficient, even if it has to be customized slightly to fit
your requirements. This is particularly true when your requirements closely resemble the all-purpose
document management use case.

Deciding whether to go with the out-of-the-box web client, a customized web client, or building your
own user interface from scratch requires careful thought and analysis that is beyond the scope of this
document.

This article is the second in a series that covers Alfresco from a configuration and customization
perspective. The first article discussed how to create custom content types and then expose those to the
Alfresco user interface. The focus in this article is on developing custom actions and configuring the
user interface to show those custom actions.

It is important to note that if you are looking for quick-and-dirty ways to operate against documents in
the repository, you may not need a custom action. For example, you could create some server-side
JavaScript that gets called from the “Execute Script” action. Or, you could run server-side JavaScript
using the JavaScript Console add-on available from Share Extras (see “Where to find more
information” for a link). There are CMIS APIs that allow you to perform bulk operations from the
command line.

Actions are useful when:

• You want to define one or more operations that can be executed repeatedly

• You want to make it easy for end-users to invoke common operations, either by clicking a menu
item or by configuring a rule on a folder that will execute the operations automatically

• You want to perform one or more operations on a schedule (which isn't covered in this
document)

Part 1 of this document explains how to implement the “back-end” piece of the action. The document
includes two different examples. One action, called “Move Replaced” will be used as a “Rule Action”.
The other action is called “Set Web Flag” and it will be called from menu items in the user interface.

Part 2 explains how to configure the user interface to work with the custom actions. The first edition of
this tutorial focused on the Alfresco Explorer web client. This edition focuses on the Alfresco Share
web client. The Alfresco Explorer sections have been moved to the Appendix if you need them.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 5 of 40

http://ecmarchitect.com/

ecmarchitect.com

Setup

Before getting too far down the road, here are a couple of notes about my setup:

 Mac OS X Lion 10.7.2

 MySQL 5.1.60 (Macports)

 Tomcat 6.0.32

 Java 1.6.0_29

 Alfresco 4.0.c Community, WAR-only distribution

Other operating systems, databases, application servers, and Alfresco versions will work with the
examples in Part 1, but in Part 2 I use some Share extension points that are new in Alfresco 4, so older
versions may not work with the Share configuration examples.

The code that accompanies this article is split into two Eclipse projects—one for repository tier
configuration and customization and the other for Share tier configuration and customization. Each has
its own build script which copies the artifacts into the appropriate places within the exploded Alfresco
and Share WARs. In real life, you'll want to package your customizations as AMPs for both the
repository and Share tiers.

The code is inclusive of the code from the “Custom Content Types, 2nd Edition” tutorial with the
exception of the Web Services and CMIS examples. This example uses the SomeCo content model
established in that tutorial. If you don't understand how to extend Alfresco's content model with your
own or how to configure custom models in the Share and Explorer user interfaces, read that tutorial
first.

Part 1: Implementing an Action

Actions are very commonly used when implementing Alfresco. This part of the tutorial explains what
actions are, sets up a couple of examples, then shows how actions are implemented in Java.

What is an Action?

The term, “action” is overloaded quite heavily across the Alfresco platform (and application
development, in general). For the purposes of this document, an action is a discrete, reusable unit of
work that can be performed against an object in the repository, and can optionally be configured at run-
time by the user. Some of the out-of-the-box actions include things like: Check-out, Check-in, Add
Aspect, Remove Aspect, Move, Send Email, and Specialize Type.

Sometimes, the term “rule action” is used to describe this type of action. That's because actions are
frequently used when configuring a rule on a folder. For example, suppose that there is a requirement to
always create a PNG version of GIFs checked in to a specific folder. This is easily done by creating a

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 6 of 40

http://ecmarchitect.com/

ecmarchitect.com
rule that watches for new or updated GIFs and then runs the “Transform and Copy Image” action when
it finds an object that meets the criteria.

The screenshots below show the out-of-the-box actions available when configuring a rule in Alfresco.
Drawing 1 is Alfresco Explorer and Drawing 2 is Alfresco Share.

But actions aren't limited to running as part of a rule. Actions can be called from menu items in the user
interface (both Explorer and Share). These are often called “UI actions” to distinguish the actual menu
item, the UI action, from the thing that actually does the work, the “rule action” or simply, the “action”.

These screenshots show the “browse” UI actions and the “details” UI actions in Alfresco Explorer:

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 7 of 40

Drawing 1: Actions in Explorer rule config

Drawing 2: Actions in Share rule config

http://ecmarchitect.com/

ecmarchitect.com

Similarly, Alfresco Share has UI actions available in the document library's document list as well as the
document details page:

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 8 of 40

Drawing 3: Browse UI actions in Explorer

Drawing 4: Details UI
actions in Explorer

http://ecmarchitect.com/

ecmarchitect.com

So actions can be invoked from a rule and can be triggered from a menu item. Actions can also be
called from code which means they can be invoked from server-side JavaScript, workflows, web
scripts, or any other piece of code that can get to the Action Service.

Because the same action can be invoked from all of these places, actions are a powerful way to write
content operations once and then leverage them in many places.

Example 1: Move Replaced

Using actions and workflow together can be an effective way to customize the web client for the needs
of the business. Consider SomeCo, the fictitious company introduced in the content types tutorial.
Suppose SomeCo wants to use Alfresco to manage the policies and procedures for their entire
organization. They need to be able to track when a new policy or procedure is published that
supersedes an older policy document.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 9 of 40

Drawing 5: Browse UI
actions in Share

Drawing 6: Details UI
actions in Share

http://ecmarchitect.com/

ecmarchitect.com
SomeCo uses three folders to keep track of the state of their policies: Draft, Approved, and Archived.
SomeCo uses Alfresco's Simple Workflows to move policies from folder to folder. When someone
moves a policy into the Approved folder, if that policy replaces an older policy, the older policy needs
to be automatically moved to the Archived folder. Alfresco has a “Move” action, but doesn't have a
“Move Replaced” action. A new “Move Replaced” action can easily be created to accomplish this.

Example 2: Set Web Flag

Recall from the first tutorial that SomeCo publishes a subset of the documents in their repository to a
company portal. SomeCo uses a flag on the object to keep track of which documents should be shown
on the portal. In the first tutorial, that flag was set either by editing the field in the user interface or by
running code. Now it is time to make it a bit more user-friendly by providing menu items in the user
interface that can enable and disable the flag.

The rest of this document explains how to implement both of these actions including the configuration
necessary to make them available from the user interface.

Implementing the Move Replaced Action

Actions run against specific nodes. In this example, the action needs to find the documents that the
“actioned upon node” replaces so they can be moved. In order to do this, the action needs to know
where to move the old documents to and it needs to know how to find the old documents. The first part,
where to move the old documents, will be a parameter that gets passed to the action. The second part
will leverage a “replaces” relationship.

A "replaces" relationship is a pretty common requirement. In fact, Alfresco already has a "replaceable"
aspect in the out-of-the-box content model. The “replaceable” aspect defines an association called
“cm:replaces”. So, the out-of-the-box content model already accommodates documents that replace
other documents. All that is needed is some configuration to expose this relationship to the user
interface.

The business logic will reside in an action executer class. This will allow SomeCo end-users to call the
action from a rule configured on any folder, without further involvement from the development team.

Implementing the action's business logic involves two steps:

1. Writing the action executer class

2. Configuring the action in Spring

Once that's done, the action can be called from code using the Action Service, or it can be wired in to
the user interface (including rule configuration), which is covered in Part 2.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 10 of 40

http://ecmarchitect.com/

ecmarchitect.com

Step 1: Write the action executer class

At its most basic, an action consists of an Action Executer class and its associated Spring bean
configuration. Implementing an action involves extending ActionExecuterAbstractBase and then
implementing the executeImpl method. Before starting, though, think about similar code that might
already exist within Alfresco that might be a good starting point for the new action. Alfresco is open
source--it would be a shame to ignore that valuable resource. Plus, following the same patterns to
implement this customization will make it easier for someone to support and makes it easier to share
our code with others or even to contribute the code back to the Alfresco community project.

The new action is doing a move, so the existing Move action is a good place to start. In fact, the only
difference between the Move action and the custom Move Replaced action is that the node being
moved isn't the current node--it's the node on the target end of a "replaces" association.

Alfresco's executer class for the Move action is called
org.alfresco.repo.action.executer.MoveActionExecuter. If you have the Alfresco source you can find it
in the repository project. I'll copy it into my own repository project and call it
MoveReplacedActionExecuter. The executeImpl method is where the move logic is handled. It looks
like this:

 public void executeImpl(Action ruleAction, NodeRef actionedUponNodeRef)
 {
 NodeRef destinationParent =
(NodeRef)ruleAction.getParameterValue(PARAM_DESTINATION_FOLDER);
 try
 {
 fileFolderService.move(actionedUponNodeRef, destinationParent, null);
 }
 catch (FileNotFoundException e)
 {
 // Do nothing
 }
 }
Listing 1: Alfresco's out-of-the-box action executer for Move

The code simply grabs the parameter value for the destination folder and then calls the
FileFolderService to do the move. This is a good start for Move Replaced. All I need to do is modify
the executeImpl method to find the nodes related to the current node by a "replaces" association, and
then for each result, set up and perform a move.

 public void executeImpl(Action ruleAction, NodeRef actionedUponNodeRef) {
 // get the replaces associations for this node
 List<AssociationRef> assocRefs =
nodeService.getTargetAssocs(actionedUponNodeRef, ((QNamePattern)
QName.createQName(NamespaceService.CONTENT_MODEL_1_0_URI, "replaces")));

 // if there are none, return
 if (assocRefs.isEmpty()) {

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 11 of 40

http://ecmarchitect.com/

ecmarchitect.com
 // no work to do, return
 return;
 } else {
 NodeRef destinationParent =
(NodeRef)ruleAction.getParameterValue(PARAM_DESTINATION_FOLDER);
 for (AssociationRef assocNode : assocRefs) {
 // create a noderef for the replaces association
 NodeRef targetNodeRef = assocNode.getTargetRef();
 // if the node exists
 if (this.nodeService.exists(targetNodeRef) == true) {
 try {
 fileFolderService.move(targetNodeRef, destinationParent,
null);
 } catch (FileNotFoundException e) {
 // Do nothing
 }
 }
 } // next assocNode
 } // end if isEmpty
 }
Listing 2: The custom action executer for Move Replaced

The only other change needed is to change the value of the constant NAME from "move" to "move-
replaced". (Throughout this document I'll only include relevant pieces of these classes—check the
source that accompanies this article for code that actually compiles).

Step 2: Configure the action in Spring

In the content types tutorial, you learned that Spring bean configurations go in files that end with
“context.xml”. Those files reside in the “extension” directory to keep them separate from the rest of the
Alfresco web application. For this example, I created a file called “someco-action-context.xml” and
placed it in /config/alfresco/extension. It contains the following:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
'http://www.springframework.org/dtd/spring-beans.dtd'>

<beans>
 <bean id="move-replaced"
class="com.someco.action.executer.MoveReplacedActionExecuter" parent="action-
executer">
 <property name="fileFolderService">
 <ref bean="FileFolderService" />
 </property>
 <property name="nodeService">
 <ref bean="NodeService" />
 </property>
 </bean>

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 12 of 40

http://ecmarchitect.com/

ecmarchitect.com
</beans>
Listing 3: Spring configuration for Move Replaced

That's all there is to it. You could compile the MoveReplacedActionExecuter class, JAR it up, and
deploy it to Alfresco's WEB-INF/lib. The Spring context file goes in WEB-
INF/classes/alfresco/extension. In fact, the Ant build file that accompanies this code does just that.
Once in place, the action can be invoked from code. That's obviously not going to be useful for end
users, though. Before wiring the action into the user interface, let's look at another Action Executer
example.

Implementing the Set Web Flag action

This action will be used to set the flag on content which should be shown in the SomeCo portal. Recall
from the content types tutorial that the property is a boolean named “sc:isActive” which is defined as
part of an aspect named “sc:webable”. Also in that aspect is a date property named “sc:published” that
keeps track of when the content was last published to the portal.

The Set Web Flag action, then, needs to set the “sc:isActive” flag. The value to set it to (true or false)
can be passed in as a parameter to the action. When the flag is set to true, the action should set the
“sc:published” property with the current date.

This action could be called from a rule, but SomeCo intends to configure a UI action in the user
interface to allow end-users the ability to enable or disable a piece of content for display on the portal
with a single click.

Just like in the Move Replaced example, the steps are:

1. Write the action executer class

2. Configure the action in Spring

Then, the action will be ready to use.

Step 1: Write the SetWebFlag action executer class

Like the MoveReplacedAction, this action extends ActionExecuterAbstractBase. The action takes a
parameter that specifies the value for the “sc:isActive” flag. Actions declare parameters by overriding
the addParameterDefinitions method:

 @Override
 protected void addParameterDefinitions(List<ParameterDefinition> paramList) {
 paramList.add(
 new ParameterDefinitionImpl(
 PARAM_ACTIVE,
 DataTypeDefinition.BOOLEAN,
 false,
 getParamDisplayLabel(PARAM_ACTIVE)));
 }

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 13 of 40

http://ecmarchitect.com/

ecmarchitect.com
Listing 4: Declaring a parameter for an action

The constructor for the ParameterDefinitionImpl takes the name of the parameter, the parameter's data
type, whether or not the parameter is mandatory, and a label. If the custom action had additional
parameters this method would have one paramList.add call for each parameter.

The next step is to create the action's logic in the executeImpl method:

 @Override
 protected void executeImpl(Action action, NodeRef actionedUponNodeRef) {
 Boolean activeFlag = (Boolean)action.getParameterValue(PARAM_ACTIVE);

 if (activeFlag == null) activeFlag = true; // default

 // set the sc:isActive property to true
 Map<QName, Serializable> properties =
nodeService.getProperties(actionedUponNodeRef);
 properties.put(
 QName.createQName(SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
SomeCoModel.PROP_IS_ACTIVE), activeFlag);

 if (activeFlag) {
 // set the sc:published property to now
 properties.put(
 QName.createQName(SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
SomeCoModel.PROP_PUBLISHED), new Date());
 }

 // if the aspect has already been added, set the properties
 if (nodeService.hasAspect(actionedUponNodeRef,
 QName.createQName(
 SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
 SomeCoModel.ASPECT_SC_WEBABLE))) {
 nodeService.setProperties(actionedUponNodeRef, properties);
 } else {
 // otherwise, add the aspect and set the properties
 nodeService.addAspect(actionedUponNodeRef,
 Qname.createQName(
 SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
 SomeCoModel.ASPECT_SC_WEBABLE), properties);
 }
 }
Listing 5: Action executer for Set Web Flag

The logic should be pretty easy to follow. The code grabs the value of the active parameter. Then, it
sets up a map to hold properties. If the active flag is being set to true, the date property is added to the
map. The last part of the method just checks to see whether the aspect needs to be added or not. If so,
the aspect can be added and the properties set in a single call.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 14 of 40

http://ecmarchitect.com/

ecmarchitect.com

Step 2: Configure the action in Spring

The Spring configuration for this action goes in the same context file as the pervious action:

 <bean id="set-web-flag" class="com.someco.action.executer.SetWebFlag"
parent="action-executer">
 <property name="nodeService">
 <ref bean="NodeService" />
 </property>
 </bean>
Listing 6: Spring configuration for Set Web Flag

This action is now ready to be wired in to the user interface. That's covered in Part 2.

Java versus Server-side JavaScript

A quick side-note before moving on to the front-end: The action executer examples shown in Part 1
were both implemented in Java. However, action executers can also be implemented using server-side
JavaScript. The steps are the same: write the logic, then configure it through Spring. This is an
attractive option for teams lacking in Java skills. The tradeoff is that the JavaScript API does not have
100% of the feature set of the Alfresco Java API. You may also see a performance difference with the
JavaScript API, which essentially wraps the lower-level Java API.

Part 2: Configuring the Action's Front-End in Share

In Part 1 of this document you learned how to create an Action Executer class. The result was an action
that could be called from code. But both actions need to be invoked by end-users. In the case of the
Move Replaced action, an end-user will configure a rule that will invoke the action. When the end-user
configures the action, they need to specify the directory to send the replaced documents to. That means
the user interface needs to know how to let the end user pick a target folder.

The Set Web Flag action gives end-users the ability to set the active flag and the publish date with a
single click of a menu item. So the user interface needs to know where to show that menu item and
how to invoke the SetWebFlag action in the repository.

The specific steps to configure the user interface for these two actions depend on the web client being
used. Alfresco Explorer used to be the only choice. Alfresco Share is usually the preferred web client
these days. Alfresco 4 added some extensibility features that make it much easier to configure actions
in Share than it used to be. So I'll use Share and if you need to see how to do the exact same thing in
Explorer, check the Appendix.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 15 of 40

http://ecmarchitect.com/

ecmarchitect.com

Configuring the Replaceable Aspect in Share

Alfresco's out-of-the-box content model already defines an association called “cm:replaces” as part of
the “cm:replaceable” aspect. But neither the aspect nor the association are configured to be displayed in
the Share user interface. That's easy to fix.

Recall from the content types tutorial that the Share user interface configuration resides in a file called
“share-config-custom.xml”. The “cm:replaceable” aspect can be added to the list of aspects a user can
see, like this:

 <visible>
 <aspect name="sc:webable" />
 <aspect name="sc:productRelated" />
 <aspect name="cm:replaceable" />
 </visible>
Listing 7: Adding the replaceable aspect to the list of visible aspects

Next, the “cm:replaces” association needs to show up when editing properties. In this example,
SomeCo will use instances of “cm:content” for policies, but this would work the same way if a specific
content type, like “sc:hrPolicy”, were used instead. So I've copied the form configuration for
“cm:content” from the out-of-the-box form configuration into “share-config-custom.xml”. Just like in
the content types tutorial, the association is configured by adding children to the “field visibility” and
“appearance” elements, like this:

 <!-- cm:geographic aspect -->
 <show id="cm:latitude" />
 <show id="cm:longitude" />

 <!-- cm:replaceable -->
 <show id="cm:replaces" />

 </field-visibility>
Listing 8: Configuring the cm:replaces association

and this:

 <field id="cm:sentdate" read-only="true" />
 <field id="cm:subjectline" read-only="true" />
 <field id="cm:replaces" label-id="assoc.cm_replaces"/>
 </appearance>
Listing 9: Configuring the cm:replaces association

The last step in exposing the “cm:replaceable” aspect and “cm:replaces” association is localizing the
labels. The web-extension/messages/scModel.properties file already exists, so add the following:

#cm:replaceable
aspect.cm_replaceable=Replaceable
assoc.cm_replaces=Replaces
Listing 10: Localizing the replaceable aspect

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 16 of 40

http://ecmarchitect.com/

ecmarchitect.com
The next step is to configure the Move Replaced Rule Action in Share.

Configuring the Move Replaced Rule Action in Share

Share is pretty smart. If you deploy the Move Replaced action as-is it will automatically get added to
the list of actions users can select when configuring a rule. So for simple actions, you won't have to do
anything further. But in this example, the action takes an argument. By default, Share will try to render
a plain text field for the argument which might work in some cases. But this action takes a node
reference as an argument and making an end-user provide a node reference for the target folder would
be a very bad thing. Instead, Share needs to render a folder picker dialog for the target folder argument.
Luckily, Alfresco has already developed such a dialog—Share just has to be told to use it.

In Alfresco 4, a lot of work has been done to make customizing and extending the user interface easier.
Unfortunately, at the moment, getting a folder picker to show up for this action takes a bit more work
than it ought to. My guess is that this will get resolved in the future. Until then, here is what is
involved:

1. Override the rule config action web script to point to a custom client-side component and to set
the order the action appears in the action list.

2. Override the rule details and rule edit web script to include a “script” reference in the “head”
section of the page that points to the client-side JavaScript where the custom client-side
component lives.

3. Write the custom client-side component.

It looks like a pain, but once you figure it out it isn't too bad. And it is a lot easier than it used to be if
that makes you feel any better. Let's go through the steps.

Step 1: Specify the custom client-side component and set the action order

In Alfresco 4, a lot of the action configuration has been pulled into share-form-config-custom.xml. But
rule config still lives in the rule config web script. This isn't a big deal—it is easy to override one or
more files that make up a web script. In this case, copy the rule-config-action.get.config.xml file from
$TOMCAT_HOME/webapps/share/WEB-INF/classes/alfresco/site-
webscripts/org/alfresco/components/rules/config into your own project. For example, in the code that
accompanies this article, I copied the file into config/alfresco/web-extension/site-
webscripts/org/alfresco/components/rules/config.

The first change is to specify a custom client-side JavaScript component:

<rule-config type="action">
 <component>SomeCo.RuleConfigActionCustom</component>
 <config-definitions webscript="/api/actiondefinitions">
Listing 11: Configuring Share to use a custom client-side component for rule config

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 17 of 40

http://ecmarchitect.com/

ecmarchitect.com
This will be a new client-side JavaScript component that will get created shortly.

Next, the action gets arranged in the list of actions. In this case, it makes sense to see it in the list right
after “Move”:

 <menu>
 <group>
 <item id="select"/>
 </group>
 <group>
 <action name="script"/>
 </group>
 <group>
 <action name="copy"/>
 <action name="move"/>
 <action name="move-replaced"/>
 </group>
Listing 12: Placing the Move Replaced action in the rule action list

Finally, the action gets bound with a client-side JavaScript function:

 <action name="copy">Copy</action>
 <action name="move">Move</action>
 <action name="move-replaced">MoveReplaced</action>
 <action name="simple-workflow">SimpleWorkflow</action>
Listing 13: Specifying which client-side handler to use for Move Replaced

Step 2: Add a reference to the custom client-side JavaScript file to the
head

The client-side JavaScript file where the custom client-side component resides needs to be pulled in to
the “<head>” section of the page so the browser knows about it. Web scripts that end with “head.ftl”
are used for this purpose. For rules, there are two web scripts that will need to refer to the custom
client-side JavaScript: “rule details” and “rule edit”. So the rule-details.get.head.ftl and rule-
edit.get.head.ftl files are copied from $TOMCAT_HOME/webapps/share/WEB-
INF/classes/alfresco/site-webscripts/org/alfresco/components/rules. The modifications to both are
identical and are as follows:

<@link rel="stylesheet" type="text/css" href="$
{page.url.context}/res/components/rules/rule-details.css" />
<@script type="text/javascript" src="${page.url.context}/res/components/rules/rule-
details.js"></@script>
<!--Custom javascript file include for detail mode -->
<@script type="text/javascript" src="$
{page.url.context}/someco/components/rules/config/rule-config-action-
custom.js"></@script>
Listing 14: Adding the client-side JavaScript reference to head

Okay, at this point, the rule form will be looking for a custom client-side JavaScript component called

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 18 of 40

http://ecmarchitect.com/

ecmarchitect.com
SomeCo.RuleConfigActionCustom, the action will show up in the right place, and the page's “<head>”
element will include a reference to the custom client-side JavaScript file where the component will
reside. It's time to implement the client-side JavaScript.

Step 3: Implement the custom client-side JavaScript component

The FreeMarker files have been modified to include a reference to a file called rule-config-action-
custom.js. By convention, I include client-side JavaScript in my Eclipse project under
“src/web/someco”. Alfresco has their rule-related client-side JavaScript under
“components/rules/config” so I used the same folder structure.

The first thing the rule-config-action-custom.js file does is declare a SomeCo namespace. It is
important that you namespace everything in Alfresco to avoid collisions with Alfresco's code or other
add-ons you might install.

if (typeof SomeCo == "undefined" || !SomeCo)
{
 var SomeCo = {};
}
Listing 15: Declaring a SomeCo namespace in client-side JavaScript

Next, comes the constructor for the component (I've left out some boring stuff, check the source for the
full listing):

 SomeCo.RuleConfigActionCustom = function(htmlId)
 {
 SomeCo.RuleConfigActionCustom.superclass.constructor.call(this, htmlId);

 // Re-register with our own name
 this.name = "SomeCo.RuleConfigActionCustom";
 Alfresco.util.ComponentManager.reregister(this);

 // Instance variables
 this.customisations = YAHOO.lang.merge(this.customisations,
SomeCo.RuleConfigActionCustom.superclass.customisations);
 this.renderers = YAHOO.lang.merge(this.renderers,
SomeCo.RuleConfigActionCustom.superclass.renderers);

 return this;
 };
Listing 16: Snippet of client-side JavaScript showing the RuleConfigActionCustom constructor

If this is your first foray into the world of object-oriented client-side JavaScript, relax. What, you
thought just because “Java” and “JavaScript” have a word in common that object inheritance would
work the same way? How literal of you! Basically, what's going on here is that the constructor is
calling its superclass constructor, then it is registering itself with the Alfresco component manager. The
YUI merge calls provide a way to avoid re-typing a bunch of code that exists in the parent class.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 19 of 40

http://ecmarchitect.com/

ecmarchitect.com
The final bit is where the extend actually happens, and the MoveReplaced handler is defined:

 YAHOO.extend(SomeCo.RuleConfigActionCustom, Alfresco.RuleConfigAction,
 {

 /**
 * CUSTOMISATIONS
 */

 customisations:
 {
 MoveReplaced:
 {
 text: function(configDef, ruleConfig, configEl)
 {

 // Display as path
 this._getParamDef(configDef, "destination-folder")._type =

"path";
 return configDef;

 },
 edit: function(configDef, ruleConfig, configEl)
 {
 // Hide all parameters since we are using a cusotm ui but set
default values
 this._hideParameters(configDef.parameterDefinitions);

 // Make parameter renderer create a "Destination" button that
displays an destination folder browser
 configDef.parameterDefinitions.push({
 type: "arca:destination-dialog-button",
 displayLabel: this.msg("label.to"),
 _buttonLabel: this.msg("button.select-folder"),
 _destinationParam: "destination-folder"
 });
 return configDef;
 }
 },
 },

 });
Listing 17: Defining the MoveReplaced client-side handler

This part is a copy of the out-of-the-box handler for Move with the object renamed to MoveReplaced.
The MoveReplaced object has two methods: text and edit. Text is what is displayed for the component
in read mode. Edit is for edit mode. The edit method is what is responsible for generating the button
that invokes the folder picker. In this case, edit leverages an existing renderer called “arca:destination-
dialog-button” that is defined in the superclass. If you needed to produce markup for a parameter for
which Alfresco doesn't already have a renderer, you would add the appropriate code to the renderers
object.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 20 of 40

http://ecmarchitect.com/

ecmarchitect.com
With this final step in place, end-users can configure a rule that invokes the Move Replaced action. The
rule editor will use the custom handler for the action so that a folder picker dialog is used to select the
target folder.

You can see this happening in the screenshot below. You can see the dialog that gets launched when the
Select button is clicked as well as the little folder icon and folder path that are rendered once a selection
is made.

Configuring the Set Web Flag UI Action in Share

Now it is time to shift focus from rule actions to UI actions. SomeCo wants end-users to be able to
click an item in the menu that either enables or disables the web flag. Alfresco 4 has a framework that
allows you to easily add new UI actions to the menu. You can configure:

• UI actions that call a web page (external or within Share),

• UI actions that invoke rule actions on the repository tier that take no parameters,

• UI actions that invoke rule actions on the repository tier that launch a dialog to gather
parameters before passing those parameters to an action on the repository tier,

• UI actions that call arbitrary client-side JavaScript action handlers.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 21 of 40

Drawing 7: Configuring the Move Replaced action in Share

http://ecmarchitect.com/

ecmarchitect.com
Recall that the Set Web Flag action takes one parameter—the value of the active flag. I could use the
action framework out-of-the-box to invoke a dialog that lets the user set the action flag to true or false
and then call the set web flag action. But that doesn't meet the single-click requirement, and a form is
overkill to grab one boolean value.

If you look in the list above, you'll see there isn't an option to hardcode arbitrary parameters in the
action config when the action is called. So we're forced to either call a custom client-side JavaScript
action handler or add new actions to the repository tier that don't take parameters. There's no “right”
answer here—it's just a matter of where you want to write the code. At some point, Alfresco will
probably enhance the framework to meet this use case. Until then, for this example, I'm going to go the
“no parameter” route, which means I'll have to add two new actions on the repository tier that don't
require parameters to be passed in.

So, the steps to follow for this example are:

1. Create two new repository tier actions that take no parameters

2. Update share-config-custom.xml with the action configuration

3. Create icons and localize the strings

Step 1: Create two new repository tier actions

You created action executer classes in Part 1 of this tutorial so this is nothing new. There needs to be
one action for enabling the active flag and one for disabling it and neither should take a parameter. By
sub-classing the existing SetWebFlag action, code can be kept to a minimum. Here's the
EnableWebFlag action executer in its entirety:

public class EnableWebFlag extends SetWebFlag {
 @Override
 protected void executeImpl(Action action, NodeRef actionedUponNodeRef) {
 action.setParameterValue(SetWebFlag.PARAM_ACTIVE, true);
 super.executeImpl(action, actionedUponNodeRef);
 }
}
Listing 18: Sub-classing SetWebFlag to provide a new action that doesn't require parameters

The DisableWebFlag action looks just like this but sets the active flag to false. I won't repeat it here.

The Spring configuration for the action is similarly short:

 <bean id="enable-web-flag" class="com.someco.action.executer.EnableWebFlag"
parent="set-web-flag">
 <property name="publicAction">
 <value>false</value>
 </property>
 </bean>
Listing 19: Spring configuration for Enable Web Flag

Again, I'm leaving out the disable-web-flag bean but it looks just like this one with a different class.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 22 of 40

http://ecmarchitect.com/

ecmarchitect.com
Setting the “publicAction” property to false hides these actions from the action dropdowns. There's no
real reason to do that, in this case—it's just an example.

Step 2: Update share-config-custom.xml with the action configuration

The next step is to configure the Share user interface to show the UI actions in the document library
and document details menus. While we're at it, I'm going to also drop in a UI action that calls a web
page just for kicks.

The action config has moved to share-config-custom.xml in Alfresco 4. Action configuration consists
of two parts. The “actions” element contains a list of action definitions. The “actionGroups” element
contains a list of action groups. Action groups are things like the list of actions shown in the document
library document list or the document details page.

Actions and action groups live in the “DocLibActions” config within share-config-custom.xml. Here
are the action definitions for the web site action and web enable:

 <!-- Actions -->
 <config evaluator="string-compare" condition="DocLibActions">
 <actions>
 <action id="someco-web-site" type="link" label="actions.someco.web-
site" icon="someco-website">
 <param name="href">http://ecmarchitect.com</param>
 <param name="target">_blank</param>
 </action>
 <action id="someco-web-enable" type="javascript"
label="actions.someco.web-enable" icon="someco-create-website">
 <param name="function">onActionSimpleRepoAction</param>
 <permissions>
 <permission allow="true">Write</permission>
 </permissions>
 <param name="action">enable-web-flag</param>
 <param name="successMessage">message.web-flag.enabled</param>
 <param name="failureMessage">message.web-flag.failure</param>
 </action>
Listing 20: UI action declaration for Web Site and Web Enable

The “someco-web-site” action is really simple. It is a “link” type of an action, which means it is
invoking a URL that is provided in a parameter. The labels and icons will get set up in the next step.

The “someco-web-enable” action is a little more involved. It is a “javascript” action, which means it is
calling a client-side JavaScript handler. What's cool is that Alfresco has already provided a client-side
handler called “onSimpleRepoAction”. It just needs to know the name of the repository tier action to
invoke (the ones created in Step 1) and messages to display on success and failure.

I've left out “someco-web-disable” because it is so similar.

This action uses the built-in onActionSimpleRepoAction, but what if you needed to gather parameters
from the end-user before calling the action? For that you can use onActionFormDialog. The itemId

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 23 of 40

http://ecmarchitect.com/

ecmarchitect.com
specifies a form ID corresponding to a form defined in share-form-config-custom.xml. Take a look at
the document-transform action as an example.

The last part of the config is the action definitions. This slots the actions into the appropriate groups:

 <actionGroups>
 <actionGroup id="document-browse">
 <action index="500" id="someco-web-site" />
 <action index="510" id="someco-web-enable" />
 <action index="520" id="someco-web-disable" />
 </actionGroup>
 <actionGroup id="document-details">
 <action index="500" id="someco-web-site" />
 <action index="510" id="someco-web-enable" />
 <action index="520" id="someco-web-disable" />
 </actionGroup>
 </actionGroups>
 </config>
Listing 21: UI action groups extended to include custom actions

There are a couple of things to note about the action configuration. First, you don't have to copy in the
out-of-the-box actions and action groups. They will get merged in. Second, the order of the action
items in the list can be controlled by setting the index attribute. The higher the index, the lower in the
list the menu items appear.

Step 3: Create icons and localize the strings

The last step is to provide some icons for the actions and localize the action labels. In step 2 the action
element had an “icon” attribute. Alfresco will look in a path for an icon that starts with that name and
ends with “-16.png”. Entirely lacking in graphics skills, I grabbed a couple of out-of-the-box icons that
looked somewhat applicable and copied them in to my project under
“src/web/components/documentlibrary/actions”. Because this is Alfresco's folder structure, I made sure
to name the icons starting with “someco” so they would not be confused with others.

The localized strings can go in the existing scModel.properties file. Here they are:

#actions
actions.someco.web-site=SomeCo
actions.someco.web-enable=SC Enable Web
actions.someco.web-disable=SC Disable Web
message.web-flag.enabled=Successfully enabled the SomeCo active flag
message.web-flag.disabled=Successfully disabled the SomeCo active flag
message.web-flag.failure=Error setting the SomeCo active flag
Listing 22: Localized strings for the new actions

With icons and localized strings in place, you could deploy and run and everything should work. (If
you are following along, don't forget to deploy both the repository tier project and the share tier project
because you made changes in both).

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 24 of 40

http://ecmarchitect.com/

ecmarchitect.com
But, what you'll notice is that both the Enable and Disable UI actions show up at the same time, which
is lame. The enable should only show up when the active flag is not set to true. The disable should only
show up when the active flag is set to true. That's easy to fix with an evaluator and that's covered in the
next section.

Finishing Touches: Evaluators & Indicators

If you are writing a UI action that should show up all of the time, you don't need to do anything else.
But hiding a UI action based on certain conditions is a pretty common requirement. In this example,
the UI action needs to hide based on a metadata value. Alfresco has several “evaluators” that can be
leveraged out-of-the-box to do this. You can hide UI actions based on things like:

• The presence of an aspect

• The type of a node

• Mimetype

• The type of site the document library is sitting in

• The name of the site

Evaluators can also be chained together if multiple conditions need to apply. The out-of-the-box
evaluators live in slingshot-document-library-context.xml so refer to that file for the full list of
evaluators and an example of how chaining works. You can also write completely new evaluators using
Java deployed to the Share tier.

For this example, the out-of-the-box “value” evaluator will do quite nicely. The steps, then, will be as
follows:

1. Declare a new evaluator in Spring config that extends the “value” evaluator

2. Update the action config in share-config-custom.xml to point to the evaluator

Alfresco 4 has also made it easy to configure “indicators”, which are little icons in the document
library column. This isn't entirely relevant to the subject at hand, but because they work just like
evaluators and because it makes it easy to see from the document library which content has the active
flag set, I'm going to add a third step:

3. Update the share-config-custom.xml file to show a document library indicator

After these steps are complete, the UI actions will show or hide themselves appropriately and end-users
will be able to see documents with the active flag set to true from the document list.

Step 1: Declare a new evaluator in Spring config

Only one evaluator is needed for this example. The evaluator just needs to know the value of the active
flag—the UI actions can show or hide themselves based on that. Evaluators live in Spring config and

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 25 of 40

http://ecmarchitect.com/

ecmarchitect.com
Spring config resides in files ending with “context.xml”. This project already has “custom-slingshot-
application-context.xml” so I added the evaluator to that file:

 <bean id="someco.evaluator.doclib.action.isActive"
parent="evaluator.doclib.action.value">
 <property name="accessor" value="node.properties.sc:isActive" />
 <property name="comparator">
 <bean class="org.alfresco.web.evaluator.StringEqualsComparator">
 <property name="value" value="true" />
 </bean>
 </property>
 </bean>
Listing 23: Declaring a new evaluator that checks the value of sc:isActive

This bean extends the out-of-the-box “value” evaluator and provides properties specific to our needs. In
this case, the “accessor” is the name of the property the evaluator needs to inspect. The comparator
does a string comparison against the value of “true”. Note the use of “someco” in the bean ID. This is
another place where you want to make sure you are using your own namespace.

All evaluators work similarly. If you wanted to check for a specific aspect, for example, you would
extend the aspect evaluator and then specify the aspect you are looking for in one of the properties.

Step 2: Update the action config in share-config-custom.xml

With an evaluator declared the next step is to tell the action configuration which evaluator to use to
decide whether or not to show the UI action. So, back over in share-config-custom.xml, I've made the
following modifications, highlighted in bold:

 <action id="someco-web-enable" type="javascript"
label="actions.someco.web-enable" icon="someco-create-website">
 <param name="function">onActionSimpleRepoAction</param>
 <permissions>
 <permission allow="true">Write</permission>
 </permissions>
 <param name="action">enable-web-flag</param>
 <param name="successMessage">message.web-flag.enabled</param>
 <param name="failureMessage">message.web-flag.failure</param>
 <evaluator
negate="true">someco.evaluator.doclib.action.isActive</evaluator>
 </action>
 <action id="someco-web-disable" type="javascript"
label="actions.someco.web-disable" icon="someco-delete-website">
 <param name="function">onActionSimpleRepoAction</param>
 <permissions>
 <permission allow="true">Write</permission>
 </permissions>
 <param name="action">disable-web-flag</param>
 <param name="successMessage">message.web-flag.disabled</param>
 <param name="failureMessage">message.web-flag.failure</param>

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 26 of 40

http://ecmarchitect.com/

ecmarchitect.com
 <evaluator>someco.evaluator.doclib.action.isActive</evaluator>
 </action>
Listing 24: Specifying the evaluator in the action configuration

Both actions use the same evaluator. For the someco-web-enable action, the evaluator is negated. So if
the evaluator returns true (i.e., the sc:isActive property is set to true) the web enable action will be
hidden. If the evaluator returns false, the action will show itself.

Step 3: Update the share-config-custom.xml file to show a document
library indicator

The last step is really not needed at all if all you are doing is adding an action to the menu. But because
it is easy to do and leverages the same evaluator written in the previous step, I didn't think you'd mind.

The goal here is to show a little icon in the document library only if the “sc:isActive” property is set to
true. If you are already thinking, “Hey, that sounds like an evaluator!” you've got it.

Indicators are part of the “DocumentLibrary” config in share-config-custom.xml. All it needs is a
pointer to an evaluator. In this case, the one created earlier can be reused:

 </types>

 <!-- Custom Indicators -->
 <indicators>
 <indicator id="someco-website" index="10">
 <evaluator>someco.evaluator.doclib.action.isActive</evaluator>
 </indicator>
 </indicators>
 </config>
Listing 25: Adding an indicator to the document library configuration

Alfresco will use the indicator's id attribute appended with “-16.png” for the icon. I copied the same
icon used for the “enable” action into “src/web/components/documentlibrary/indicators” for this
purpose.

Deploy & Test

If you've been following along and you've waited to deploy until now, it's time to try it out. The code
that accompanies this article includes an Ant build file in each of the two projects. And each project
includes a build.properties file. The repository project's build.properties file needs to know the location
of the expanded Alfresco SDK and the location of the expanded Alfresco webapp root. The Share
project's build.properties file needs to know the location of the expanded Share webapp root and the
location of the YUI compressor JAR, which is used as part of the build process. Once those are set, you
should be able to run “ant deploy” for each of the two projects, start Tomcat, and test.

If everything is working correctly, you should see the SomeCo web site link and either the SC Web

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 27 of 40

http://ecmarchitect.com/

ecmarchitect.com
Enable or the SC Web Disable menu items from both the browse menu and the details page as shown
below.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 28 of 40

http://ecmarchitect.com/

ecmarchitect.com

Clicking the “SomeCo” menu item will open a browser window to the URL specified in the
configuration. Clicking the “SC Disable Web” should invoke the action on the repository tier and then

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 29 of 40

Drawing 8: Indicators show which content has
the active flag set in Share

Drawing 9: Custom UI actions
in the document list

Drawing 10: Custom UI
actions in the document
details page

http://ecmarchitect.com/

ecmarchitect.com
refresh the metadata and the action list.

Conclusion

This article has shown how actions can be used to implement reusable operations that can be run
against content in the repository. Those actions can be called from code using the Action Service and
they can be invoked from the user interface by configuring rules or by setting up UI actions and placing
those alongside other menu items in places like the document list and the details page. Hopefully it has
sparked some ideas about how you could use custom actions in your next Alfresco implementation.

Where to find more information

• All source code used in this example is available here.
• The Alfresco SDK comes with a Custom Action example.
• Official documentation for both Enterprise and Community is available at docs.alfresco.com.
• Share Extras has many examples of deeper Share customization as well as documentation of

Alfresco's client-side JavaScript components.
• Mike Hatfield and David Draper are two examples of Alfresco engineer blogs that are

extremely useful if you are customizing Share.
• For deployment help, see Packaging and Deploying Extensions in the Alfresco wiki.
• For general development help, see the Developer Guide.
• For help customizing the data dictionary, see the Data Dictionary wiki page.
• If you are ready to cover new ground, try another ecmarchitect.com tutorial in the Alfresco

Developer Series.

About the Author

Jeff Potts is the Chief Community Officer for Alfresco Software. Jeff has been a
recognized and award-winning leader in the Alfresco community for many years.
He has over 18 years of content management and collaboration experience, most of
that having come from senior leadership positions in consulting organizations.

Jeff has made many contributions to the Alfresco community since he started
working with Alfresco in 2005. Examples range from code, to tutorials and
informative blog posts, to code camps, meetups, and conference sessions. In 2008,
Jeff wrote the Alfresco Developer Guide, the first developer-focused book on
Alfresco. He has also been active in the Apache Chemistry project where he leads
the development of cmislib, the Python API for CMIS.

Read more at Jeff’s blog, ecmarchitect.com.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 30 of 40

http://ecmarchitect.com/
http://blogs.alfresco.com/wp/ddraper/
http://blogs.alfresco.com/wp/mikeh/
http://sharextras.org/jsdoc/share/
http://ecmarchitect.com/images/articles/alfresco-actions/alfresco-actions-tutorial.zip
http://ecmarchitect.com/
http://ecmarchitect.com/alfresco-developer-series
http://ecmarchitect.com/alfresco-developer-series
http://ecmarchitect.com/alfresco-developer-series
http://ecmarchitect.com/
http://wiki.alfresco.com/wiki/Data_Dictionary_Guide
http://wiki.alfresco.com/wiki/Developer_Guide
http://wiki.alfresco.com/wiki/Packaging_And_Deploying_Extensions
http://code.google.com/p/share-extras/
http://docs.alfresco.com/
http://wiki.alfresco.com/wiki/Community_file_list_4.0.c

ecmarchitect.com

Appendix

Not everyone is able to use Alfresco Share as their user interface. The sections within this Appendix
show you how to do the same thing Part 2 covers, but uses Alfresco Explorer instead of Alfresco Share.

Configuring the Replaceable Aspect in Explorer

Alfresco's out-of-the-box content model contains an aspect called “cm:replaceable” but it is not
exposed in the UI. End-users need to be able to declare which documents a new document should
replace, so the aspect will need to be added to the web-client-config-custom.xml file created in the
content types tutorial.

The “aspects” element should now look like this:

 <aspects>
 <aspect name="sc:webable"/>
 <aspect name="sc:productRelated"/>
 <aspect name="cm:replaceable"/>
 </aspects>
Listing 26: Adding the replaceable aspect to the Explorer UI config

And a new “config” element tells the user interface to show the “cm:replaces” relationship:

 <config evaluator="aspect-name" condition="cm:replaceable">
 <property-sheet>
 <show-association name="cm:replaces" display-label-id="replaces" />
 </property-sheet>
 </config>
Listing 27: Configuring the replaceable aspect for the Explorer UI

With this configuration in place, end-users can edit a document's metadata to maintain the “replaces”
relationship.

Configuring the Move Replaced Rule Action in Explorer

The back-end logic for the Move Replaced Action was implemented in Part 1. If users are going to
specify parameters for an action when configuring it as part of a rule or when invoking it via “Run
Action”, a user interface has to be provided. This is done by:

1. Create an action handler class

2. Create a corresponding JSP page

3. Localize the strings.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 31 of 40

http://ecmarchitect.com/

ecmarchitect.com

Step 1: Create an action handler class

Alfresco's bean handler class for the Move action is called
org.alfresco.web.bean.actions.handlers.MoveHandler and it resides in the Alfresco source in the Web
Client project. The bean handler class handles the "view" for the action configuration. Because both the
"Move" action and our "Move Replaced" action both have a destination folder and no other
configurable properties, only minor modifications are needed to make it work for the new action.

First, the custom action will have its own JSP for the presentation so the getJSPPath() method needs to
change from this:

 public String getJSPPath() {
 return getJSPPath(MoveActionExecuter.NAME);
 }
Listing 28: The out-of-the-box getJSPPath method in MoveHandler.java

to this:

 public final static String CUSTOM_ACTION_JSP = "/someco/jsp/actions/" +
MoveReplacedActionExecuter.NAME + ".jsp";

 public String getJSPPath() {
 return CUSTOM_ACTION_JSP;
 }
Listing 29: The new getJSPPath method in MoveReplacedHandler.java

All I'm doing here is telling the bean where to find our customized JSP.

Next, if you've ever configured an action before you know that the user interface includes a short
summary of what the action is going to do. The generateSummary() method is responsible for that
message. The actual text will be in a resource bundle, so I changed the property name from
"action_move" to "action_move_replaced".

Step 2: Create a corresponding JSP page

The JSP page that handles the move configuration for Move Replaced is identical to the out-of-the-box
move. But the title needs to be different, so it requires its own page. And, because the page is in a
different folder structure than the Alfresco JSP, the existing JSP includes will need to be updated
because they use relative links.

Copy "/source/web/jsp/actions/move.jsp" from the Alfresco Web Client project into the custom
repository project. I use "src/web/{namespace}/jsp" for all customized Alfresco JSPs by convention, so
the full path to the JSP in the custom project is, "src/web/someco/jsp/actions/move-replaced.jsp". The
customized JSPs will be deployed to a different directory structure so any existing relative links that
need to point to out-of-the-box JSPs need to point to “/jsp/parts/*”. In this case there are three includes
that I updated as follows:

 <%@ include file="/jsp/parts/titlebar.jsp" %>

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 32 of 40

http://ecmarchitect.com/

ecmarchitect.com
 <%@ include file="/jsp/parts/shelf.jsp" %>
 <%@ include file="/jsp/parts/breadcrumb.jsp" %>
Listing 30: Modified include statements in move-replaced.jsp

To point to the custom title property in the resource bundle, I changed the titleId attribute of the r:page
tag from "title_action_move" to "title_action_move_replaced".

That's it for the Java and JSP code. Now it is time to localize the action.

Step 3: Localize the Move Replaced Action

The someco-action-context.xml file needs to be updated to point to a resource bundle. I added the
following to that file:

 <bean id="someco.actionResourceBundles" parent="actionResourceBundles">
 <property name="resourceBundles">
 <list>
 <value>alfresco.extension.messages.somecoactions</value>
 </list>
 </property>
 </bean>
Listing 31: Spring configuration needed to specify the action resource bundle

Next, I need to create a resource bundle so I created a file in alfresco/extension/messages called
somecoactions.properties. Note that this file name and path matches the resource bundle declaration
from the previous step.

##
SomeCo Actions I18N file
##

Move Replaced action
move-replaced.title=Move replaced document to space
move-replaced.description=This will move the target node of a replaces association
to a specified space.
Listing 32: Localized strings for the Move Replaced action

The summary text and the JSP title get pulled from alfresco/extension/webclient.properties. The
“cm:replaces” aspect also needs to be localized. So, I added the following entries to the file:

#cm:replaceable
replaces=Replaces

#Move Replaced Action
action_move_replaced=Move replaced to ''{0}''
title_action_move_replaced=Move Replaced Action
Listing 33: Localized strings for the replaceable aspect and Move Replaced in webclient.properties

The last step is to hook in to the Alfresco action wizard UI so that when someone configures a rule or
simple workflow, the new action is listed as a valid choice. I edited the alfresco/extension/web-client-

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 33 of 40

http://ecmarchitect.com/

ecmarchitect.com
config-custom.xml file and added the following:

 <!-- action handlers -->
 <config evaluator="string-compare" condition="Action Wizards">
 <!-- add custom action handler for "Move Replaced" action -->
 <action-handlers>
 <handler name="move-replaced"
class="com.someco.action.handler.MoveReplacedHandler" />
 </action-handlers>
 </config>
Listing 34: Action wizard configuration to declare the custom action handler

The code that accompanies this document includes a sample Ant build.xml file that can be used to
deploy the files to the right spot within the Alfresco WAR. In real life, you'll want to package your
extensions as an AMP and then use the Module Management Tool (MMT) to merge the AMP with the
Alfresco WAR. For local development and testing, the Ant's deploy, which essentially does a copy into
the exploded webapp, will be fine.

To set up a test, you'll need to add the replaceable aspect to a piece of test content. After the aspect has
been applied, you should see a "replaces" section in the document's properties. If not, double-check the
web-client-config-custom.xml file. Edit the properties and select a document to replace. This
establishes the "replaces" association.

Now add a rule to the space in which "Published" documents reside. The rule should run the new
"Move Replaced" action.

Configure the action to move documents to the "Archived" space.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 34 of 40

http://ecmarchitect.com/

ecmarchitect.com

To test the logic, paste the document with the "replaces" association into the "Published" space. The
document it is replacing should get automatically moved to the "Archived" folder.

Configuring the Set Web Flag UI Action in Explorer

The Set Web Flag action isn't meant to be called from a rule so it does not have a Handler class or a
JSP. It will be called from a menu item in the Explorer user interface. These menu items are often
called “UI actions”.

Assuming the back-end action already exists, the steps to integrate it into the Explorer user interface
are:

1. Create a JSF-managed bean

2. Update web-client-config-custom.xml

3. Localize the action

Step 1: Create a JSF-managed Bean

The WebSettingsBean class gets called when the UI action is clicked. Here is a snippet from the bean's
setActive method:

 final NodeRef ref = new NodeRef(Repository.getStoreRef(), id);
 RetryingTransactionHelper txnHelper =
Repository.getRetryingTransactionHelper(fc);
 RetryingTransactionCallback<Object> callback = new
RetryingTransactionCallback<Object>() {
 public Object execute() throws Throwable {
 ActionImpl action = new ActionImpl(ref, SetWebFlag.NAME, null);
 action.setParameterValue(SetWebFlag.PARAM_ACTIVE, activeFlag);
 SetWebFlag actionExecuter = (SetWebFlag)

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 35 of 40

http://ecmarchitect.com/

ecmarchitect.com
FacesContextUtils.getWebApplicationContext(fc).getBean(SetWebFlag.NAME);
 actionExecuter.execute(action, ref);

 String msg = Application.getMessage(fc, MSG_SUCCESS_WEB_SET_ACTIVE);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
msg, msg);
 String formId = Utils.getParentForm(fc,
 event.getComponent()).getClientId(fc);
 FacesContext.getCurrentInstance().addMessage(formId + ':' +
PANEL_ID_SPACE_PROPS, facesMsg);
 return null;
 }
 };
 txnHelper.doInTransaction(callback);
 this.browseBean.getDocument().reset();
Listing 35: Custom WebSettingsBean.java

This snippet shows a transaction being set up before instantiating and executing the SetWebFlag action
executer class. The rest of the code deals with providing the user some feedback after the action runs.

Once the class is complete it has to be wired in to JavaServer Faces. This is done by creating a file
called faces-config-context.xml in WEB-INF with the following content:
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE faces-config PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces
Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config>

 <managed-bean>
 <description>
 The bean that manages SC Web settings.
 </description>
 <managed-bean-name>WebSettingsBean</managed-bean-name>
 <managed-bean-class>com.someco.web.bean.WebSettingsBean</managed-bean-
class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>browseBean</property-name>
 <value>#{BrowseBean}</value>
 </managed-property>
 </managed-bean>

</faces-config>
Listing 36: Faces configuration for the Web Settings Bean

Now that JSF knows about the new bean it can be wired into the Explorer user interface.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 36 of 40

http://ecmarchitect.com/

ecmarchitect.com

Update web-client-config-custom.xml with the new UI action

There are several menus within the Alfresco Explorer user interface. These are called “action groups”.
Actions (I'm talking about “UI actions” now) can be defined once and then added to as many action
groups as needed. A UI action might call an arbitrary URL, an action (like Set Web Flag), or a Wizard
or Dialog. This tutorial doesn't cover wizards and dialogs, but it does provide examples of the first two.

I added the following to web-client-config-custom.xml:
 <!-- UI Actions -->
 <config>
 <actions>
 <action-group id="document_browse">
 <action idref="web_site" />
 </action-group>

 <!-- Actions Menu for a document in the Browse screen -->
 <action-group id="document_browse_menu">
 <action idref="web_site" />
 </action-group>

 <!-- Actions Menu for Document Details screen -->
 <action-group id="doc_details_actions">
 <action idref="web_enable" />
 <action idref="web_disable" />
 <action idref="web_site" />
 </action-group>
Listing 37: Action groups and action references for Explorer

This part of the configuration adds a “Web Site” menu item to the browse menu, the “more” menu, and
the document details screen. It also adds the “Web Enable” and “Web Disable” to the document details
screen.

The next part of the configuration defines the UI actions. The first one is a simple action that invokes a
URL.

 <!-- Link to SomeCo's web site -->
 <action id="web_site">
 <label>SomeCo</label>
 <href>http://ecmarchitect.com</href>
 
 <target>new</target>
 </action>
Listing 38: Action declaration for the Web Site UI action in Explorer

The next one enables the “sc:isActive” flag.

 <!-- set sc:isActive to true -->
 <action id="web_enable">
 <permissions>

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 37 of 40

http://ecmarchitect.com/

ecmarchitect.com
 <!-- each permission can be an Allow or Deny check -->
 <permission allow="true">Write</permission>
 </permissions>
 <evaluator>com.someco.action.evaluator.WebEnableEvaluator</evaluato
r>
 <label-id>enableWeb</label-id>
 
 <action-listener>#{WebSettingsBean.setActive}</action-listener>
 <params>
 <param name="id">#{actionContext.id}</param>
 <param name="active">true</param>
 </params>
 </action>
Listing 39: Action declaration for Enable Web in Explorer

The “permissions” element points to an out-of-the-box permission called “Write”. I'm assuming anyone
with write access to the node is also allowed to publish the content to the web. It might make sense to
instead create a custom role, like “PortalPublisher” and use that. Honestly, I had a little bit of trouble
getting that to work so I decided to keep it simple for now and use “Write” and will follow up later
with how to modify the example to use a custom role.

The “evaluator” element is a Java class discussed in the next section. If you want to deploy and test
your action before writing that class, just comment out the evaluator. The “action-listener” refers to the
JSF-managed bean created in the previous step. The “params” element passes arguments into the
WebSettingsBean.

The final piece of config sets up the menu item to disable the “sc:isActive” flag. It's almost identical to
the “enable” case except that it passes a different value for the active flag.
 <!-- set sc:isActive to false -->
 <action id="web_disable">
 <permissions>
 <!-- each permission can be an Allow or Deny check -->
 <permission allow="true">PortalPublisher</permission>
 </permissions>
 <evaluator>com.someco.action.evaluator.WebDisableEvaluator</evaluat
or>
 <label-id>disableWeb</label-id>
 
 <action-listener>#{WebSettingsBean.setActive}</action-listener>
 <params>
 <param name="id">#{actionContext.id}</param>
 <param name="active">false</param>
 </params>
 </action>
 </actions>
 </config>
Listing 40: Action declaration for Web Disable in Explorer

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 38 of 40

http://ecmarchitect.com/

ecmarchitect.com

Localizing the Set Web Flag action

I localized the action by adding the following to somecoactions.properties:

Set web flag action
set-web-flag.title=Sets the SC Web Flag
set-web-flag.description=This will add the sc:webable aspect and set the isActive
flag.
Listing 41: Localizing the Set Web Flag action

If you deploy now you should see menu items in the right places. And if you click them they should
work. You'll notice when looking at the document details page, however, that the “SC Web Enable” and
“SC Web Disable” menu items both show up. To reduce confusion and clutter, the enable item should
only show when the flag hasn't been set or is set to false and the disable item should only show when
the flag has been set to true. Hiding and showing menu items is the job of an “evaluator” and that's the
topic of the next section.

Configuring the Evaluator to Show/Hide the Set Web Flag UI Action in
Explorer

The final step in configuring the Set Web Flag action within the Alfresco Explorer user interface is to
write an evaluator that hides/shows the menu items appropriately based on the value of the
“sc:isActive” flag.

The evaluators have already been specified in the web-client-config-custom.xml. The only thing left to
do is to implement the evaluator as a Java class. The WebEnableEvaluator class implements the
ActionEvaluator interface. The magic happens within the evaluate method and is as follows:

 public boolean evaluate(Node node) {
 FacesContext context = FacesContext.getCurrentInstance();

 // check the aspect, then check the active property
 NodeRef ref = new NodeRef(Repository.getStoreRef(), node.getId());

 // if the aspect hasn't yet been added, it can be enabled
 if (!node.hasAspect(
 QName.createQName(SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
SomeCoModel.ASPECT_SC_WEBABLE))) {
 return true;
 }

 // check the active property
 NodeService nodeSvc =
Repository.getServiceRegistry(context).getNodeService();
 boolean active = (Boolean)nodeSvc.getProperty(ref,
QName.createQName(SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
SomeCoModel.PROP_IS_ACTIVE));

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 39 of 40

http://ecmarchitect.com/

ecmarchitect.com

 return !active;
 }
Listing 42: The Web Enable Evaluator

This code checks for the presence of the “sc:webable” aspect. It actually doesn't matter if the aspect is
there or not—if it isn't, the Set Web Flag action will add it. Then, the evaluator checks the value of the
active flag and simply returns the opposite of its value (If the flag is false, return true to show the
enable menu item. If the flag is true, return false to hide the enable menu item).

The evaluator for disable is so similar, it doesn't make sense to repeat it here.

On deploying the repository project using “ant deploy” and then restarting Tomcat, you should be able
to enable and disable the web flag using the menu items on the document details page. The menu items
should only show up for users in the appropriate role, and they should hide themselves based on the
value of the active flag.

Developing Custom Actions, 2nd Edition
This work is licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported License

Page 40 of 40

http://ecmarchitect.com/

	About the Second Edition
	Introduction
	Setup
	Part 1: Implementing an Action
	What is an Action?
	Example 1: Move Replaced
	Example 2: Set Web Flag

	Implementing the Move Replaced Action
	Step 1: Write the action executer class
	Step 2: Configure the action in Spring

	Implementing the Set Web Flag action
	Step 1: Write the SetWebFlag action executer class
	Step 2: Configure the action in Spring

	Java versus Server-side JavaScript

	Part 2: Configuring the Action's Front-End in Share
	Configuring the Replaceable Aspect in Share
	Configuring the Move Replaced Rule Action in Share
	Step 1: Specify the custom client-side component and set the action order
	Step 2: Add a reference to the custom client-side JavaScript file to the head
	Step 3: Implement the custom client-side JavaScript component

	Configuring the Set Web Flag UI Action in Share
	Step 1: Create two new repository tier actions
	Step 2: Update share-config-custom.xml with the action configuration
	Step 3: Create icons and localize the strings

	Finishing Touches: Evaluators & Indicators
	Step 1: Declare a new evaluator in Spring config
	Step 2: Update the action config in share-config-custom.xml
	Step 3: Update the share-config-custom.xml file to show a document library indicator
	Deploy & Test

	Conclusion
	Where to find more information
	About the Author

	Appendix
	Configuring the Replaceable Aspect in Explorer
	Configuring the Move Replaced Rule Action in Explorer
	Step 1: Create an action handler class
	Step 2: Create a corresponding JSP page
	Step 3: Localize the Move Replaced Action

	Configuring the Set Web Flag UI Action in Explorer
	Step 1: Create a JSF-managed Bean
	Update web-client-config-custom.xml with the new UI action
	Localizing the Set Web Flag action

	Configuring the Evaluator to Show/Hide the Set Web Flag UI Action in Explorer

