ecmarchitect.com

Alfresco Developer: Intro to the Web Script Framework

October, 2007
Jeff Potts

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, Sth Floor,
San Francisco, California, 94105, USA.

http://www.ecmarchitect.com/
http://www.ecmarchitect.com/

ecmarchitect.com

Alfresco Developer: Intro to the Web Script Framework
October 2007
Jeff Potts

Introduction

This article is an introduction to the Alfresco Web Script Framework that became available with release
2.1 of the product.

We'll continue to extend the “SomeCo Whitepapers” example started in previous articles. As a quick
refresher, in those articles, we extended the out-of-the-box content model so that SomeCo could store
custom metadata about one of their document types, whitepapers. We created a custom aspect called
rateable that could be attached to any object that was user-rateable. Then, in the custom behavior article
we wrote business logic associated with the rateable aspect that knew how to calculate the average user
rating for a given piece of content. The calculation was triggered every time a rating was created or
deleted. We used server-side JavaScript to create rating objects to test out our behavior but there wasn't
an interface available that end users could use to rate whitepapers.

SomeCo is now ready to move to the next step: Exposing the rating functionality to the front-end. In
their infinite wisdom, the team at SomeCo realizes that Alfresco's Web Scripts provide a nice way to
expose a lightweight, RESTful API for working with whitepapers and ratings. So in this article, we'll
roll our own REST API for retrieving a list of whitepapers, retrieving the average rating for a given
whitepaper, retrieving a specific rating, posting a new rating for a whitepaper, and deleting all ratings
for a given whitepaper. We'll use JavaScript for most of our controller logic but we'll see how to use
Java as well. The view will be implemented using FreeMarker templates that return HTML and JSON.

The complete source code that accompanies this article is available at ecmarchitect.com. See the “More
Information” section at the end of this article for the link. In addition to the code for this article, the zip
includes the code created in the first two “SomeCo” articles so if you don't have to dig around for the
code we build upon in this article.

Sound decent? Okay, let's get started.

What is the Web Script Framework?

Content-centric applications, whether they are inside or outside the firewall, are becoming more and
more componentized. I think of this as turning traditional content management approaches inside-out.
Rather than having a single, monolithic system responsible for all aspects of a content-centric web

Alfresco Developer: Intro to the Web Script Framework Page 2 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

application, loosely-coupled sub-systems are being integrated to create more agile solutions.

This approach requires that your content management system have a flexible and lightweight interface.
You don't want to be locked in to a presentation approach based on the content repository you are
working with. In fact, in some cases, you might have very little control over the tools that will be used
to talk to your CMS.

Consider the exploding rate of Next Generation Internet (NGI) solutions, the growing adoption of wikis
and blogs within an Enterprise (“Enterprise 2.0”), and the increasing popularity of mash-ups both
inside and outside the Enterprise. These trends are driving implementations where the CMS is seen as a
black-box component with the front-end (or perhaps many different front-ends) interacting with the
CMS and other components via REST.

Among open source content management systems, Alfresco is one of the few that really lends itself to
this approach because it has many options for interacting with the repository. These options have
evolved over time. The following summarizes ways in which your front-end could work with the
Alfresco repository prior to release 2.1:

e Embed the repository. Alfresco's repository can be embedded in a custom application. Using
this approach you have the full power of the Alfresco foundation API. Of course, the downside
is that you've just tightly coupled the repository with your application. Didn't we just talk about
how important an open, loosely-coupled architecture is? Moving on...

e Web Services. Alfresco has had a SOAP-based Web Services API available for quite some
time, but SOAP-based Web Services have heavier client-side requirements than their RESTful
cousins. Some clients found that the out-of-the-box services were too chatty and had too much
processing overhead to scale well so they ended up writing their own services and exposing
them through the embedded Apache Axis server. So Web Services may not be the right fit in all
cases.

e JCR. The JCR APl is a standard way of working with content in a repository and can be
leveraged remotely through RMI. This has the benefit of using a standards-based approach for
interacting with the repository which theoretically reduces switching costs and makes the
application easier to support. One challenge with this approach is that the JCR API may not do
everything you need to do so you end up using the JCR in combination with one of the above
approaches which reduces the “switching costs” benefit. Another potential issue is that it is
Java-only.

e URL Addressability. Objects in the Alfresco repository are URL-addressable. And,
FreeMarker templates and server-side JavaScript can be applied to any node in the repository.
So, for example, you can write a FreeMarker template that returns XML or JSON. A front-end
app can then post an XMLHttpRequest to Alfresco that specifies a node reference and a

Alfresco Developer: Intro to the Web Script Framework Page 3 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

reference to the FreeMarker template. Alfresco will process the FreeMarker template in the
context of the node specified and return the results. This is the closest you can get to the
functionality of the Web Script Framework prior to 2.1.

These options are all still available and may make sense depending on exactly what you are trying to
do. But with 2.1 there's a potentially better way for interacting with the repository—the Web Script
Framework.

The Web Script Framework essentially improves on the basic idea that started with URL addressability.
Think of a web script as a chunk of code that is mapped to a human-readable (and search-engine
readable) URL. So, for example, a URL that returns expense reports pending approval might look like:

|/a1fresco/service/expenses/pending \

while a URL that returns expenses pending approval for a specific user might look like:

\/alfresco/service/expenses/pending/jpotts \

In the URL above, you could read the “jpotts” component of the URL as an implied argument. A more
explicit way to provide an argument would be like:

’/alfresco/service/expenses/pending?user=jpotts \

Or maybe “pending” is an argument as well which tells the web script what status of expense reports to
return. The point is that the structure of the URL and how (and if) your URL includes arguments is
completely up to you.

The response the URL returns is also up to you. Your response might return HTML, XML, JSON, or
even a JSR-168 Portlet.

The Web Script Framework makes it easy to follow the Model-View-Controller (MVC) pattern,
although it isn't required. The Controller is server-side JavaScript, a Java Bean, or both. The Controller
handles the request, performs any business logic that is needed, populates the Model with data, and
then forwards the request to the View. The View is a FreeMarker template responsible for constructing
a response in the appropriate format. The Model is essentially a data structure passed between the
Controller and the View.

The mapping of URL to controller is done through an XML descriptor which is responsible for
declaring the URL pattern, whether the script requires a transaction or not, and the authentication
requirements for the script. The descriptor optionally describes arguments that can be passed to the
script as well as the response formats that are available.

The response formats are mapped to FreeMarker templates through naming convention. So, for
example, the FreeMarker template that returns expenses as HTML would be named with an extension
of “html” while the one that returns XML would be named with an extension of “xml”.

Alfresco Developer: Intro to the Web Script Framework Page 4 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

The descriptor, the JavaScript file, and the FreeMarker templates can reside either in the repository or
on the file system. If a Web Script uses a Java Bean, the class must reside somewhere on the classpath.

With these building blocks in mind you may already be thinking of different ways you could leverage
Web Scripts. If not, let me help. You can use Web Scripts to expose the Alfresco content repository
through a RESTful API to:

e Enable a front-end web application written in any language that can talk HTTP to retrieve
repository data in XML, JSON, or any other format or to persist data to the repository;

e Populate JSR-168 portlets;
e Capture user-contributed content/data;

e Interact with a business process (e.g., a JBPM workflow) through non-web client interfaces
such as email;

e Create ATOM or RSS feeds for repository content or business process data; and

e Decompose the existing web client into smaller components which could potentially lend itself
to being re-born in new and exciting ways!

Okay, you probably shouldn't tackle that last one but rest assured that Alfresco is already working on it.

The last thing to mention is that Web Scripts are executed in a “Web Script Runtime”. In 2.1, there are
three runtimes available out-of-the-box. The servlet runtime executes all web scripts requested via
HTTP. The JSF runtime that allows JSF components to execute scripts. A JSR-168 runtime allows
portlets to invoke web scripts directly.

You can write your own runtime if these don't meet your needs. Alfresco may add more in the future.
At some point, you could see web script execution separated entirely from the Alfresco web application
into its own process which would lend itself to load-balancing, scalability, etc.

In this article, we'll focus on the servlet runtime for HTTP.
Web Scripts Directory

The web client comes with a tool for listing and reloading web script definitions. To get to the tool, go
to http://localhost:8080/alfresco/service/index. You'll see links that let you browse the list of deployed
web scripts and a button labeled “Refresh list of Web Scripts”. Although making changes to web scripts
that reside in the repository does not require a restart, you may have to refresh the index with this
button after a change.

Click through the links to see what is available out of the box. You'll notice that the tool itself is built
using web scripts.

Alfresco Developer: Intro to the Web Script Framework Page 5 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://localhost:8080/alfresco/service/index

ecmarchitect.com

Examples

Let's walk through some examples. We're going to start with a very simple Hello World web script.
After that, we'll get progressively more complex until, at the end, we have a REST-based interface for
creating, reading, and deleting SomeCo whitepaper ratings.

Hello World Example

Let's implement the most basic web script possible: A Hello World script that echoes back an argument.
We'll need one descriptor and one FreeMarker template. Do the following:

1. Login to Alfresco.
2. Navigate to /Company Home/Data Dictionary/Web Scripts Extensions.

3. Create a file called helloworld.get.desc.xml with the following content:

<webscript>
<shortname>Hello World</shortname>
<description>Hello world web script</description>
<url>/helloworld?name={nameArgument}</url>
</webscript>

4. Create a file called helloworld.get.html.ftl with the following content:

<html>
<body>
<p>Hello, ${args.name}!</p>
</body>
</html>
5. Go to http://localhost:8080/alfresco/service/index and press the Refresh button. If you then

click the “List Web Scripts” link you should be able to find the web script you just defined.

6. Now go to http://localhost:8080/alfresco/service/helloworld’name=Jeff. You should see:
Hello, Jeff! |

A few things to note. First, notice the file names include “get”. That's the HTTP method used to call the
URL. In later examples we'll see how to use POST and DELETE. By differentiating on the HTTP
method, you can have multiple controllers for the same ““service” depending on how the service is
called (GET vs. POST, etc.). Second, in this case we only had one argument but we could add as many
as we need. Watch out, though! Descriptors must be valid XML which means ampersands must be
escaped. So the proper way to define a URL with multiple arguments is:

| <url>/helloworld?name={nameArgument}&secondArg={anotherArg}</url> ‘

Alfresco Developer: Intro to the Web Script Framework Page 6 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://localhost:8080/alfresco/service/helloworld?name=Jeff
http://localhost:8080/alfresco/service/index

ecmarchitect.com

Third, notice we didn't include a JavaScript file in this example but the script still ran because
controllers are optional.

Most scripts are going to use a controller, though, so let's go ahead and add one.

1. Create a file called helloworld.get.js with the following content:

|mode1.foo = "bar";

2. Update your helloworld.get.html.ftl file with the following content:

<html>
<body>
<p>Hello, ${args.name}!</p>
<p>Foo: ${fool}</p>
</body>
</html>

3. Goto http://localhost:8080/alfresco/service/index and press the Refresh button. This is required
because you added a controller that the web script run-time didn't know about.

4. Now go to your web browser and enter the same URL from the first example which was
http://localhost:8080/alfresco/service/helloworld ?7name=Jeff. You should see:

Hello, Jeff!
Foo: bar

What's going on here is that the controller is getting executed before the FreeMarker template. In the
controller we can do anything the Alfresco JavaScript API can do. In this case, we didn't leverage the
JavaScript API at all—we just put some data into the “model” object which was then read by the
FreeMarker template. In subsequent examples the controller will have more work to do and in one case,
we'll use Java instead of JavaScript for the controller.

SomeCo Whitepaper User-contributed Ratings Examples

We want to create a REST API that front-end developers can use to find whitepapers and ratings as well
as post new ratings. Before we dive in, it probably makes sense to rough out the API.

Alfresco Developer: Intro to the Web Script Framework Page 7 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://localhost:8080/alfresco/service/helloworld?name=Jeff
http://localhost:8080/alfresco/service/index

ecmarchitect.com

specified whitepaper.

URL Method Description Response formats
/someco/whitepapers GET Returns a list of whitepapers. | HTML, JSON
/someco/rating?id={id } GET Gets the average rating fora |HTML, JSON

given whitepaper by passing

in the whitepaper's noderef.
/someco/rating?id={id } &rating= |POST Creates a new rating for the |HTML, JSON
{rating } &user={user} specified whitepaper by

passing in a rating value and

the user who posted the

rating.
/someco/rating?id={id } DELETE |Deletes all ratings for a HTML

Table 1: Planned ratings API

When this API is in place, front-end developers can incorporate whitepapers and user-contributed
ratings into the SomeCo web site. The following screenshots show pages that use the API we're going
to build to query for whitepaper and ratings data. It looks like the folks at SomeCo have shamelessly
ripped off the Optaros publications section. They didn't even bother to change the logo.

Alike 2.5 License

Alfresco Developer: Intro to the Web Script Framework Page 8 of 28

This work is licensed under the Creative Commons Attribution-Share

http://www.ecmarchitect.com/

ecmarchitect.com

Contact | Careers | Language ¥

“optapos Services & Solutions Approach Partners Clients Company
4

Home = Publications =
White Papers & Report:

Publications & Events White Papers and Reports written by Optaros team members:

Overview
» White Papers & Reports sample-a.pdf
Articles Mon, 15 Oct 2007 13:00:57 CDT
Rating:
Recorded Webinars
Upcoming Events In this riveting whitepaper, author Fred Smith explains why it is that web scripts are as cool as

they are. 'This new framework is going to open up all sorts of possibilities,' Fred says.
Presentations

B Get the White Paper

sample-d.pdf
Mon, 15 Oct 2007 13:01:21 CDT
Rating:

Here's another humdinger from analyst Jane Doe. Doe has spent most of her career focusing
on content management. In this paper, Jane lays out a strategy for a successful ECM
implementation

B Get the White Paper

#: Contact Site Map Terms of Use Privacy Policy

lllustration 1: The index of whitepapers uses an AJAX call to retrieve whitepaper

metadata and ratings.
You can't tell from the screenshots, but the ratings widget is clickable. When clicked it sends an
asynchronous post to the /someco/rating URL described in the table above. When the “Get the White
Paper” link is clicked, the page in Illustration 2 is displayed. I reused the description from the index
page for the Executive Summary. In the real world this would probably be a more lengthy description
separate from the introduction on the index page. The “Download this white paper” link uses the
standard “Download URL” to give the user direct access to the content.

Alfresco Developer: Intro to the Web Script Framework Page 9 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

Cortact | Caresrs | Language ¥

Hoptapos Services & Solutions || Approach || Partners || Clients || Company
O - S —
4

Home > Publications > White Papers & Reports =
sample-a.p¢
sample-a, pdf DOWHNLOAD PAPER

Download this white paper
(pdf|117,249)

Mon, 15 ©ct 2007 13:00:57 CDT
< Back to List of All White Papers

CONTACT
Brian Otis

Executive Summary

In this riveting whitepaper, author Fred Smith explains why it is that web scripts are as cool as
they are. 'This new framework is going to open up all sorts of possibilities,' Fred says.

About Optaros
Optaros Inc. (pwww.optaros.com) is a venture capital-funded consulting and systerns integration firm that helps large

enterprises use open source software and global sourcing to reduce the cost of cormmercial software and rapidly build
high-quality, cost-affective and more flaxible business applications. From offices in Boston, Geneva and Zurich, and
with off-shore delivery partners, the firm provides a range of services necessary for enterprises to maximize the
benefits of open source software - to replace existing costly proprietary software or to build new business
applications. Having launched two of the most successful IT service companies of the last two major shifts in
technology, Optares” management brings substantial expertise to creating a company that can help dients fully

adopt new tachnology models and platforms

CREATIVE COMMONS LICENSE CONTACT: Brian Oris
This wark is licensed under a Creative Commans Email: botis@optaros.com
ETAEEERE] Attribution 2.5 License Phone: (617) 227-1855 x8110

#: Contact Site Map Terms of Use Privacy Policy

Hllustration 2: The detail page also uses an AJAX call and includes the same ratings
widget as well as a download link

Listing all Whitepapers

As a quick review, recall that SomeCo writes whitepapers and manages those papers with Alfresco.
Some whitepapers are published to the web site. A custom aspect called “webable” has a flag called
isActive. Whitepapers with the isActive flag set to true should be shown on the web site. For this
article, we're going to ignore the webable aspect and the isActive flag. We'll just assume any sub-type
of sc:whitepaper found in the /Someco/Whitepapers folder is fair game. (If this bugs you, see the
sidebar).

Let's write a web script that returns all whitepapers. We want the list in two formats HTML and JSON.
HTML will allow us to easily test the service and JSON will make it easy for code on the front-end to
process the list. This will require four files: one descriptor, one JavaScript controller, and two
FreeMarker templates—one for each format.

Alfresco Developer: Intro to the Web Script Framework Page 10 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

Before we start coding, let's talk a bit about organization.
First, packages. The Web Script Framework allows us to
organize script assets into a hierarchical folder or package
structure. Just as it is with Java it is probably a good idea to
do this for all web scripts. Following a reverse domain name
pattern is probably a good convention. So we'll be using
“com/someco” for our package which means our files will
reside under /Company Home/Data Dictionary/Web Scripts
Extensions/com/someco.'

Next, URLSs can follow any pattern we want, but they will
always start with <alfresco webapp>/service where
“<alfresco webapp>" is the name of the Alfresco web
application context (usually “alfresco’). Because the URL
pattern must be unique, it is probably a good idea to
incorporate the package name in the URL. In this article we'll
prefix all URLs with “someco”.

Alfresco reserves certain package names and URLs for their
own use (see the Alfresco wiki) but by following the
conventions proposed here, you'll steer clear of those.

Finally, you've seen that web script assets can reside in the

Sidebar: Enabling a subset of whitepapers
for web display

The real-world solution this example is based
on uses Ul actions to enable and disable the
“sc:isActive” flag. An Evaluator class hides
or shows the “Enable Web” or “Disable
Web” Ul action link based on the value of
the flag and the group membership of the
user. If you want to do something similar on
your own, the sc:webable aspect is in the
model included with the source code for this
article. And, I've included two scripts
(enableWeb.js and disableWeb.js) that you
can use to attach the webable aspect and set
the isActive flag appropriately. If you want
the whitepaper service to filter the list based
on the isActive flag, the Lucene query in the
whitepaper.get.js file needs to be appended
with “@sc\\:isActive:true” to show only
active whitepapers. I left this functionality
out of the example because it isn't core to the
topic.

repository, but they can also reside in the file system. The only requirement is that they be on the
classpath, but I suggest that they reside in the “alfresco/extension’ directory just like your other
extensions. Following the package structure suggested earlier, if we were to store our scripts on the file
system, rather than the repository, we'd put them in alfresco/extension/templates/webscripts/com/

SOmecCo.

The advantage of using the file system is that the web scripts that make up your solution can be
deployed alongside your other extensions without requiring anyone to upload them to the repository.

The disadvantage is that changes require a restart.

In the source code I've provided with this article, the web scripts are set up to deploy to the file system
with the other extensions. If, instead of deploying the sample code, you want to follow along and you
want to avoid restarts, move my scripts out of the alfresco extension directory before you deploy, then
upload your scripts to the repository like we did for the Hello World example.

1 TItisn't required that you use the “Web Scripts Extensions” folder in the repository. I did it because it seemed consistent
with how web client customizations are deployed (using the alfresco/extension folder). Web scripts placed in the “Web
Scripts Extensions” folder that have the same file names as those in the “Web Scripts” folder will override the scripts
stored in “Web Scripts”. For this reason, if you want others to be able to override your scripts, use the “Web Scripts”
folder rather than “Web Scripts Extensions”. See the Alfresco wiki for more on web script folder search order.

Alike 2.5 License

Alfresco Developer: Intro to the Web Script Framework
This work is licensed under the Creative Commons Attribution-Share

Page 11 of 28

http://www.ecmarchitect.com/

ecmarchitect.com

If scripts are defined in the repository as well as the classpath, the files in the repository take
precedence over the files on the classpath. The Alfresco wiki documents the search order for web
scripts (See “Where to find more information” at the end of this article for a list of references).

Step 1: The descriptor

With that, we should be good to go. The first step is to create the descriptor file. It should be named
whitepapers.get.desc.xml and should look like this:

<webscript>
<shortname>Get all whitepapers</shortname>
<description>Returns a list of active whitepapers</description>
<url>/someco/whitepapers</url>
<url>/someco/whitepapers.json</url>
<url>/someco/whitepapers.html</url>
<format default="json">extension</format>
<authentication>guest</authentication>
<transaction>none</transaction>

</webscript>

There are a few elements in this descriptor we didn't see in the Hello World example. First, notice that
there are multiple URL elements. There is one URL for each format plus a URL without a format. This
shows how to request a different output format from the same base URL. Because the URLSs differ only
in format, it isn't strictly required that they be listed in the descriptor, but it is a good practice.

In this case, we're using the “extension” syntax—the extension on the URL specifies the format. An
alternative syntax is to use the “argument” syntax like this:

<url>/someco/whitepapers?format=json</url>
<url>/someco/whitepapers?format=html</url>

My current thinking is that the extension syntax is preferred because it is friendlier to search engines
but there may be reasons to use the argument syntax.

The format element declares the type of syntax we're using and defines a default output format. If you
want to accept either syntax, you can use “any” as the format. In our case, using this descriptor if
someone uses the argument syntax, they'll get an Error 500. If someone uses the URL without
specifying a format, they'll get JSON.

The authentication element declares the lowest level of authentication required for this script. If your

script touches the repository you will want this to be Guest or higher. Other options are “none”, “user”,
and “admin”.

The transaction element specifies the level of transaction required by the script. Listing whitepapers
doesn't need a transaction so we've got it set to “none”. Other possible values are “required” and
“requiresnew”’.

Next, we need a controller. Create a file called whitepapers.get.js with the following content:

Alfresco Developer: Intro to the Web Script Framework Page 12 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

<import resource="classpath:alfresco/extension/scripts/rating.js">

var whitepapers =
search.luceneSearch("PATH:\"/{http://www.alfresco.org/model/application/1.0}compan
y home/{http://www.alfresco.org/model/content/1.0}Someco\"

+TYPE:\"{http://www.someco.com/model/content/1.0}whitepaper\"");

if (whitepapers == null || whitepapers.length == 0) {
logger.log("No whitepapers found");
status.code = 404;

status.message = "No whitepapers found";
status.redirect = true;
} else {

var whitepaperInfo = new Array();
for (i = 0; i < whitepapers.length; i++) {
var whitepaper = new whitepaperEntry(whitepapers[i],
getRating(whitepapers[il]));
whitepaperInfo[i] = whitepaper;
}

model.whitepapers = whitepaperInfo;

}

function whitepaperEntry(whitepaper, rating) {
this.whitepaper = whitepaper;
this.rating = rating;

}

The first thing to notice about the script is that we're importing another script. The rating.js script was
created as part of the last article to contain logic used to calculate the average rating. The idea here is
that retrieving a rating is also business logic related to a rating, so it should reside in the rating.js file as
well. This makes it easy for us to reuse that logic in other scripts. We'll see the updated version of the
rating.js script momentarily. (The ability to import a script from another script was added with release
2.1. The import tag is not native to the Rhino JavaScript implementation).

The next thing to notice is that the script queries the repository using Lucene to get a list of
whitepapers. Look at what happens if there are no whitepapers found. The response code gets set to 404
which is the standard HTTP response code for “File not found”. Alfresco has a standard response
template for error codes but you can override it with your own by creating FreeMarker templates that
follow a specific naming convention. For example, we could have a custom 404 response template for
whitepapers by creating a file called whitepapers.get.html.404.ftl. See the Alfresco wiki for more
information.

The last thing that happens is that we build a new Array for our results. I could just set
model.whitepapers equal to the whitepapers variable that contains the query results but I want to add
some data to the result set, so I'm building a new Array and setting that to the model. (I know the
average rating is a property of a whitepaper, so it may not yet be obvious why I have a separate function

Alfresco Developer: Intro to the Web Script Framework Page 13 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://www.someco.com/model/content/1.0

ecmarchitect.com

for retrieving the rating or why I would store the rating in the model separate from the whitepaper.
Trust that it will make sense later).

Remember that our controller imports a script called rating.js. This script resides in our classpath but
the import tag also supports including scripts that reside in the repository. If you still have rating.js

around from the custom behaviors article, the difference between it and this one is a new function
called getRating as shown below:

function getRating(curNode) {
var rating = {};
rating.average =

curNode.properties["{http://www.someco.com/model/content/1.0}averageRating"];
rating.count =

curNode.properties["{http://www.someco.com/model/content/1.0}ratingCount"];
return rating;
¥

The function simply retrieves the averageRating and ratingCount properties from the specified node
and returns them in a rating object. The full source for rating.js is in the accompanying source code.

Assuming there are items in the search results, we'll need FreeMarker templates to process them. Let's

create the HTML response template first. Create a new file called whitepapers.get.html.ftl with the
following content:

<#assign datetimeformat="EEE, dd MMM yyyy HH:mm:ss zzz">
<html>

<body>

<h3>Whitepapers</h3>

<table>

<#1list whitepapers as child>
<tr>

<td>Name</td><td>${child.whitepaper.properties.name}</td>
</tr>
<tr>

<td>Title</td><td>${child.whitepaper.properties["cm:title"]}</td>

</tr>

<tr>

<td>Link</td><td>${url.context}${child.whit
epaper.url}</td>
</tr>
<tr>
<td>Type</td><td>${child.whitepaper.mimetype}</td>
</tr>
<tr>

<td>Size</td><td>${child.whitepaper.size}</td>
</tr>

Alfresco Developer: Intro to the Web Script Framework Page 14 of 28

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

<tr>
<td>Id</td><td>${child.whitepaper.id}</td>
</tr>
<tr>
<td>Description</td>
<td><p><#if child.whitepaper.properties["cm:description"]?exists &&
child.whitepaper.properties["cm:description"] !=
"">¢{child.whitepaper.properties["cm:description"]}</#if></p>
</td>
</tr>
<tr>
<td>Pub
Date</td><td>${child.whitepaper.properties["cm:modified"]?string(datetimeforma
t) }</td>
</tr>
<tr>
<td>Rati
ng</td>
<td>
<table>
<tr>
<td>Average</td><td>${child.rating.average}</td>
</tr>
<tr>
<td>Count</td><td>${child.rating.count}</td>
</tr>
</table>
</td>
</tr>
<#if !(child.whitepaper == whitepapers?last.whitepaper)>
<tr><td colspan="2" bgcolor="999999"> </td></tr>
</#if>
</#list>
</table>
</body>
</html>
This template iterates through the query results passed in by the controller, and builds an HTML table

with properties of each whitepaper. (Yes, the table is ugly. Yes, you could use CSS to spruce it up
tremendously or even remove the table entirely. But for SomeCo, this response template is really for
debugging purposes only and I didn't want to fool with the CSS so a table it is).

The last thing we have to do before we test the web script is create the JSON response template. Create
a file called whitepapers.get.json.ftl with the following content:

<#assign datetimeformat="EEE, dd MMM yyyy HH:mm:ss zzz">

Alfresco Developer: Intro to the Web Script Framework Page 15 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

{"whitepapers" : [
<#list whitepapers as child>
{
"name" : "${child.whitepaper.properties.name}",
"title" : "${child.whitepaper.properties["cm:title"]1}",
"link" : "${url.context}${child.whitepaper.url}",
"type" : "${child.whitepaper.mimetype}",
"size" : "${child.whitepaper.size}",
"id" : "${child.whitepaper.id}",
"description" : "<#if child.whitepaper.properties["cm:description"]?exists &&

child.whitepaper.properties["cm:description"] !=
"">¢{child.whitepaper.properties["cm:description"]}</#if>",

"pubDate" :
"${child.whitepaper.properties["cm:modified"]?string(datetimeformat)}",
"rating" : {
"average" : "${child.rating.average}",
"count" : "${child.rating.count}",
}
}

<#if !(child.whitepaper == whitepapers?last.whitepaper)>,</#if>
</#list>
]
}

Again, just like the HTML response template, the script iterates through the result set but this one
outputs JSON. The JSON structure is completely arbitrary.

Assuming you have some test data in your repository (Someco Whitepaper objects in your
Someco/Whitepapers folder) you should be able to refresh the web script list and run the web script.
Because we told Alfresco that this script requires Guest access or higher, you'll need to either log in to
Alfresco before running the script, authenticate with a valid user and password when the basic
authentication dialog is presented, or append “&guest=true” to the URL like this:
http://localhost:8080/alfresco/service/someco/whitepapers.html&guest=true. If you forget the “.html”
you'll get a JSON response because we set that to the default.

If all goes well you should see something similar to the figure below:

Alfresco Developer: Intro to the Web Script Framework Page 16 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://localhost:8080/alfresco/service/someco/whitepapers.html&guest=true

ecmarchitect.com

Whitepapers

Name sample-d.pdf

Title sample-d.pdf

Link [alfrescof/d/d/workspace/SpacesStore/f6a570ec-6bfl-11dc-b587-f368be3aeachfsample-d.pdf
Type application/pdf

Size 117,248

Id fBa570ec-6bfl-11dc-b587-f368be3asach

Here's another humdinger from analyst Jane Doe. Doe has spent most of her career
Description focusing on content management. In this paper, Jane lays out a strategy for a successful
ECM implementation.
Pub Date Mon, 15 Oct 2007 13:01:21 CDT

. Average 1.923
Rating

Count 13
Name sample-a.pdf
Title sample-a.pdf
Link [alfresco/d/d/workspace/SpacesStore/0ed4ldb47-6bbd-11dc-8966-8d9225693aae/sample-a.pdf
Type application/pdf
Size 117,248
Id 0edl1db47-6bbd-11dc-8966-8d9225693aae

In this riveting whitepaper, author Fred Smith explains why it is that web scripts are as
Description cool as they are. 'This new framework is going to open up all sorts of possibilities,' Fred
says.

Pub Date Mon, 15 Oct 2007 15:58:46 CDT

Average 3.167

Rati
Hatnd Count 12

Debugging

Did it work? If not, it's time to debug. The first thing you're going to want to do is to go into
log4j.properties and set log4j.logger.org.alfresco.repo.jscript to DEBUG. This will cause any logger.log
statements in your controller to write to catalina.out.

Another tool you'll want to leverage is the web script list. You can use it to see (1) if Alfresco knows
about your script and (2) the version of the scripts the run-time knows about. For example, you can go
to http://localhost:8080/alfresco/service/script/com/someco/whitepapers/whitepapers.get and Alfresco
will dump the descriptor and all of the response templates.

The Node Browser can be helpful to debug problems as well. In this case, for example, we're running a
Lucene query in our JavaScript. If the controller isn't finding any whitepapers even though you've
created test data, try executing the query in the Node Browser. If it doesn't return results, there's
something wrong with your test data.

Retrieving the Rating for a Whitepaper

Getting a specific rating is roughly the same as getting a whitepaper but it is a bit easier because of our

Alfresco Developer: Intro to the Web Script Framework Page 17 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://localhost:8080/alfresco/service/script/com/someco/whitepapers/whitepapers.get

ecmarchitect.com

existing getRating function in rating.js. All the controller has to do is grab the ID argument, locate the
node, then call getRating as shown below:

<import resource="classpath:alfresco/extension/scripts/rating.js">

if (args.id == null || args.id.length == 0) {
logger.log("ID arg not set");
status.code = 400;

status.message = "Node ID has not been provided";
status.redirect = true;
} else {

logger.log("Getting current node");
var curNode = search.findNode("workspace://SpacesStore/" + args.id);
if (curNode == null) {

logger.log("Node not found");

status.code = 404;

status.message = "No node found for id:" + args.id;
status.redirect = true;
} else {

model.rating = getRating(curNode, args.user);

}

}

The descriptor and response templates are very similar to the whitepaper example so I won't include
them here. After we get the post in place, we'll revisit the HTML response template by making some
updates that help us test.

For now, here's what a successful JSON call to the rating service returns:

{"rating"
{
"average" : "1.923",
"count" : "13",
}
}

Posting a Rating with a Java-backed Web Script

Before we talk about the POST web script we should talk about authentication. All of our /someco
scripts require Guest access or higher. That means we either have to have an active session already
established, we have to append “&guest=true” to the URL, or we have to login when the browser
presents us with a basic authentication dialog. (Another option is to get a ticket from a web service call,
but that's not in the scope of this article).

Alfresco Developer: Intro to the Web Script Framework Page 18 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

SomeCo doesn't want to open up write access to the /Someco/Whitepapers folder to Guest users who
might try to access the repository via the web client so that means we need a real user account in order
to write new rating objects. We could use “user” authentication for the POST but SomeCo doesn't want
to set up user accounts for every user that might rate content.

The solution is to let Guest call the POST URL but leverage the Alfresco Java API to “run as” a
different user. (In our case we'll use admin but a user account dedicated to the purpose of creating
ratings is probably a better idea). The post logic will reside in a Java Bean rather than a server-side
JavaScript file.

The descriptor and the response templates look like the examples we've seen so far so I won't repeat
them here. Take a look at the accompanying source code if you are curious.

The piece that is new is the use of Java as the controller so let's spend some time on that. We'll
implement this Java-backed web script in three steps. The first step is to write the business logic for
creating the rating. Just like when we put the business logic in the rating.js file to promote reuse, we're
going to use the Rating bean we created in the previous article for the new create() method. The second
step is to write the Java bean that functions as our controller. The third step is to configure the
controller bean via Spring so that Alfresco knows to invoke it when the web script is called.

Step One: Business logic

Add the following method to the com.someco.behavior.Rating class we created in the previous article.

public void create(NodeRef nodeRef, int rating, String user) {
boolean switchUser = false;

String currentUser = AuthenticationUtil.getCurrentUserName();

if (!currentUser.equals("admin")) {
logger.debug("Current user is not admin so switching to admin");
AuthenticationUtil.setCurrentUser("admin");
switchUser = true;

}

UserTransaction txn = transactionService.getUserTransaction();

try {
txn.begin();

// add the aspect to this document if it needs it
if (nodeService.hasAspect(nodeRef,
Qname.createQName (SomeCoModel . NAMESPACE SOMECO CONTENT MODEL,
SomeCoModel .ASPECT SC RATEABLE))) {
logger.debug("Document already has aspect");
} else {
logger.debug("Adding rateable aspect");

Alfresco Developer: Intro to the Web Script Framework Page 19 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

nodeService.addAspect(nodeRef,
Qname.createQName (SomeCoModel . NAMESPACE SOMECO CONTENT MODEL,
SomeCoModel .ASPECT SC RATEABLE), null);
}

Map<QName, Serializable> props = new HashMap<QName, Serializable>();

props.put(QName.createQName (SomeCoModel.NAMESPACE SOMECO CONTENT MODEL,
"rating"), rating);

props.put(QName.createQName (SomeCoModel.NAMESPACE SOMECO CONTENT MODEL,
"rater"), user);

nodeService.createNode(nodeRef,
Qname.createQName (SomeCoModel . NAMESPACE SOMECO CONTENT MODEL,
SomeCoModel .ASSN_SC RATINGS),
Qname.createQName (SomeCoModel . NAMESPACE SOMECO CONTENT MODEL,
"rating” + new Date().getTime()),
Qname.createQName (SomeCoModel . NAMESPACE SOMECO CONTENT MODEL,
SomeCoModel.TYPE SC RATING), props);

txn.commit();

} catch(Throwable e) {

try {

if (txn.getStatus() == Status.STATUS ACTIVE) txn.rollback();
} catch (Throwable ee) {

e.printStackTrace();
}

}

if (switchUser) AuthenticationUtil.setCurrentUser(currentUser);

}

This is a bit painful to look at but basically what's going on is:
e If the current user is not admin, the current user is set to admin
e A new transaction is started
e If the node doesn't yet have the rateable aspect, it is added
e The rating and rater properties are set
e The transaction is committed

e If the current user was switched to admin, the current user is switched back to whomever it was
before the switch to admin

Step Two: Web script controller bean

Alfresco Developer: Intro to the Web Script Framework Page 20 of 28

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

With the create() method in place, all we have to do is write a Java class that grabs the id, rating, and
rater arguments and calls the method. To do that, create a new class called
com.someco.scripts.PostRating. The class name isn't significant but it seems like following some sort
of descriptive convention could be helpful here if there are a large number of Java-backed scripts. The
class needs to extend org.alfresco.webscripts.DeclarativeWebScript. Our logic goes in executelmpl as
shown below.

}

public class PostRating extends org.alfresco.web.scripts.DeclarativeWebScript {
Logger logger = Logger.getlLogger(PostRating.class);
private Rating ratingBean;
@Override

protected Map<String, Object> executeImpl(WebScriptRequest req, WebScriptStatus
status) {

String id = req.getParameter("id");
String rating = req.getParameter("rating");
String user = reqg.getParameter("user");

if (id == null || rating == null || rating.equals("0") || user == null) {
logger.debug("ID, rating, or user not set");
status.jsSet code(400);
status.jsSet message("Required data has not been provided");
status.jsSet redirect(true);
} else {
NodeRef curNode = new NodeRef("workspace://SpacesStore/" + id);
if (curNode == null) {
logger.debug("Node not found");
status.jsSet code(404);
status.jsSet message("No node found for id:" + id);
status.jsSet redirect(true);
} else {
ratingBean.create(curNode, Integer.parseInt(rating), user);
}

}

Map<String, Object> model = new HashMap<String, Object>();
model.put("node", id);

model.put("rating", rating);

model.put("user", user);

return model;

public Rating getRatingBean() {

Alfresco Developer: Intro to the Web Script Framework Page 21 of 28

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

return ratingBean;

}

public void setRatingBean(Rating ratingBean) {
this.ratingBean = ratingBean;
}

}
This code should look strikingly similar to a JavaScript controller and in fact it does the same thing. It
checks the arguments, sets an error code if the arguments are missing, and then writes some data to the
model.

The controller gets the Rating class through Spring dependency injection. We'll configure that in our
Spring config, which is the next step.

Step Three: Spring config for the Web script controller bean

The following shows the contents of someco-scripts-context.xml. The name of the file isn't important,
but it must end with *context.xml.

<?xml version='1.0"' encoding="'UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
"http://www.springframework.org/dtd/spring-beans.dtd"'>

<beans>
<bean id="webscript.com.someco.ratings.rating.post"
class="com.someco.scripts.PostRating" parent="webscript">
<property name="ratingBean">
<ref bean="ratingBehavior" />
</property>
</bean>
</beans>

This should look like any other Spring bean config file you've seen. The web script magic is in the id
and parent attributes. The id follows a naming convention. The convention is:

|webscript.package.service—id.method \

Pay close attention to the use of the singular “webscript” here versus the plural “webscripts” in the Data
Dictionary folders. That's a potential multi-hour debugging session ending in a forehead slap with a
“Doh!” if you aren't careful.

It is probably worth mentioning that a decision to use a Java-backed web script doesn't exclude the use
of JavaScript for that web script. If you have both a Java class and a JavaScript file, the Java class gets
executed first followed by the JavaScript. The script has access to everything the Java class put in the
model and can update the model before passing it along to the response template.

Alfresco Developer: Intro to the Web Script Framework Page 22 of 28

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

Revisiting the rating.get.html.ftl template

Now we have everything we need in place but we don't have a great way to test the rating POST. So,
what we'll do is add a little rating widget' to the rating.get.html.ftl template. A simple link would do but
I wanted to test out the widget before incorporating it into a real page.

First, let's see what it looks like when we call /someco/rating.html/id=someid. The figure below shows
a call when the whitepaper node has 13 ratings and an average of 1.923.

Back to the list of whitepapers
Node: f6ab70ec-6bf1-11dec-bb87-f368be3asach
Average: 1.923

of Ratings: 13

Ratef:ljsmith

Rating:

The purpose of the rating widget is two-fold. First, it graphically displays the average rating for a
whitepaper. Second, each star in the widget is hot. So when you click one of the rating stars, an
asynchronous post is made to /someco/rating which causes a new rating object to get created. The
rating posted depends on the star clicked. The person submitting the rating would normally be passed in
based on some sort of credential, maybe from a portal session or a cookie. In our little test, the rater
gets pulled from the field.

Let's look at HTML first, then some of the JavaScript:

<p>Back to the
list of whitepapers</p>
<p>Node: ${args.id}</p>
<p>Average: ${rating.average}</p>
<p># of Ratings: ${rating.count}</p>
<form name="login">
Rater:<input name="userId"></input>
</form>
Rating: <div class="rating" id="rating ${args.id}"
style="display:inline">${rating.average}</div>

This is all basic HTML/FreeMarker stuff you've seen before. The last line sets up a div for the ratings

1 Tused the code at http://www.progressive-coding.com/tutorial.php?id=6 as the starting point for the rating widget. Most
of it is unchanged with the exception of changing the ratings from being 0-indexed to being 1-indexed and following the
author's instructions to hook the widget into the page using Prototype which I already happened to have lying around.

Alfresco Developer: Intro to the Web Script Framework Page 23 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://www.progressive-coding.com/tutorial.php?id=6

ecmarchitect.com

widget. The id of the div uses the node ref of the whitepaper. This allows multiple ratings widgets to be
on the same page and makes it easy for the JavaScript to pass the node ref on to the /someco/rating
URL.

The second piece is the JavaScript. I'm going to omit some of the less interesting functions and just
show the functions related to posting ratings. The accompanying source code has the full source.

function submitRating(evt) {
var tmp = Event.element(evt).getAttribute('id').substr(5);
var widgetId = tmp.substr(0@, tmp.indexOf(' '));
var starNbr = tmp.substr(tmp.indexOf(' ')+1);

alert("Post to URL:" + widgetId + "," + starNbr);
if (document.login.userId.value != undefined && document.login.userId.value !=
n II) {
curUser = document.login.userId.value;
} else {
curUser = "jpotts";
}
postRating(widgetId, starNbr, curUser);
}
function postRating(id, rating, user) {
if (receiveReq.readyState == 4 || receiveReq.readyState == 0) {
receiveReq.open("POST", "/alfresco/service/someco/rating?id=" + id +

"&rating=" + rating + "&guest=true&user=" + user, true);
receiveReq.onreadystatechange = handleRatingPosted;
receiveReq.send(null);

}
}

function handleRatingPosted() {
if (receiveReq.readyState == 4) {
alert("Post successful");
}

}

Those of you familiar with AJAX techniques may be wondering why I didn't use Prototype to make the
post since I was already using it with the rating widget. I had trouble getting Prototype to play nicely
with the Web Script Framework. For some reason the arguments weren't getting recognized. So |
punted and used the lower-level XMLHttpRequest. You'll also notice that I don't dynamically update
the rating or re-init the widget after the successful post. My only excuse for that one is laziness.

Deleting ratings

Setting up a web script for delete is similar to the GET for ratings. The descriptor is named
rating.delete.desc.xml. I set mine to require “admin” authentication. It seems rare that you would want

Alfresco Developer: Intro to the Web Script Framework Page 24 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

to delete all ratings for a given node but highly likely that if you are going to expose it, it should be for
admins only.

As in previous examples, the controller JavaScript reads and checks the arguments then calls a function.
In this case it is the deleteRatings function that has been added to rating.js. The body of the function is:

function deleteRatings(curNode) {

// check the parent to make sure it has the right aspect
if (curNode.hasAspect("{http://www.someco.com/model/content/1.0}rateable"))

{
// continue, this is what we want
} else {
logger.log("Node did not have rateable aspect.");
return;
}
// get the node's children
var children = curNode.children;
if (children !'= null && children.length > 0) {
logger.log("Found children...iterating");
for (i in children) {
var child = children[i];
logger.log("Removing child: " + child.id);
child.remove();
}
}
}

The script bails if the node doesn't have the rateable aspects (because there wouldn't be any ratings).
Otherwise, it grabs the children and deletes them. Note the important assumption that the only children
that exist are ratings. If there's a possibility of other child associations, you'd obviously want to be more
discriminating.

Example summary

We've implemented two GET scripts (one for whitepapers and one for rating), a POST script for
creating new ratings, and a DELETE for clearing out ratings. At this point SomeCo has everything they
need for building a front-end that talks to the Alfresco repository via REST. One piece of functionality
I didn't show, but I've included in the source, is the ability for an optional “user”” argument to be passed
in to the two GET scripts. When present, the script will return the last rating for the specified user. I'll
leave it to you to follow the source to figure out how that works.

Alfresco Developer: Intro to the Web Script Framework Page 25 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

Dealing with the cross-domain scripting limitation

You may have noticed that in all of my URL examples, I'm using localhost. In fact, the static HTML
pages (whitepaper index and whitepaper detail) that make AJAX calls are also on localhost. I did this to
simplify the example but in real life, it is highly likely that the code making an AJAX call to your web
script will reside on a different host than the one where Alfresco lives. This creates a problem called the
“cross-domain scripting limitation”. The issue is that for security reasons browsers don't let you open
an XMLHttpRequest to a different host than the one serving the page. There are a few ways you can
handle this depending on your situation.

e Use script tags. One way to work around the problem is to use a script tag in which the src
attribute points to a location on a different host. The browser thinks it is loading a JavaScript
file but what it is really doing is calling your web script which returns JSON. The script tags can
be output dynamically through document.write.

e Use a proxy. Servers aren't subject to the browser's security constraints. You can easily write
your own Java servlet that acts as a reverse proxy. AJAX calls go against the proxy and pass in
the “real” URL as an argument. The servlet then invokes the URL and returns the results.

e Use a callback mechanism. Alfresco claims to have a callback mechanism built in to the web
script run-time. The way it is supposed to work is that you pass in a function name as an
argument to the web script like “&alf_callback=someFunction”. The function is supposed to get
called when the page is loaded. I couldn't get it working and ended up filing a Jira ticket.

e Deploy everything to the same server. This is the least likely scenario to work in a production
implementation but it's the one I chose for this article so we wouldn't have to spend a lot of time
on the issue. The scripts and images the ratings widget depends on reside in someco/javascript
and someco/images, respectively, under the Alfresco web root. The whitepaper index and
whitepaper details pages I used for the screenshots at the beginning of the article are enhanced
copies of the files used for the Optaros web site deployed to the ROOT web application folder.

Deploying and Testing

To run the sample as-is, all you have to do is:
1. Import the web-script-article-project.zip file into Eclipse.
2. Change build.properties to match your environment.
3. Run the default Ant task.
The default Ant task will compile all necessary code, JAR it up, zip up the JAR and the extensions into

Alfresco Developer: Intro to the Web Script Framework Page 26 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

the appropriate folder structure, and then unzip on top of the Alfresco web root which deploys the
custom model, Spring config files, web client customizations, scripts, web scripts, and the images and
JavaScript for the rating.get.html page to the appropriate directories.

After an error-free start up, create Someco/Whitepapers in your Company Home and upload a couple of
test whitepapers. Upload and execute the addTestRating.js script in the context of each test whitepaper
to create test rating objects.

You should then be able to run any of the web scripts identified in this article without any problems.
In case you are curious, my environment is:

e Ubuntu Dapper Drake

e MySQL 4.1 (with version 5.0.3 of the JDBC driver)

e Javals5.0_12

e Tomcat 5.5.x

e Alfresco 2.1.0 Enterprise, WAR-only distribution

Obviously, other operating systems, databases, and application servers will work as well. Web Scripts,
however, only work starting with Alfresco 2.1.

Conclusion

This article has given you an introduction to the Alfresco Web Script Framework. We began with a very
simple Hello World script and then gradually moved to more complex examples which culminated in a
REST API for retrieving whitepapers, getting the average rating for a specific whitepaper, posting new
ratings for a given whitepaper, and deleting all ratings for a specific whitepaper. We used both
JavaScript and Java to implement controller logic. We used FreeMarker to output HTML as well as
JSON. We saw some options for working around the cross-domain scripting limitation.

There are still topics left to explore. One example is using Web Scripts to integrate a portal like Liferay
or JBoss Portal with Alfresco. Another is Microsoft Office-Alfresco integration which is based on Web
Scripts. And what about using Web Scripts to customize the Web Client user interface? Hopefully,
you've been inspired enough to take a look at those topics on your own. Maybe you'll even blog about
your experience. If so, or if you have any other feedback, please let me know. I'd love to hear from you.

Where to find more information

- The complete source code that accompanies this article is available here from ecmarchitect.com.
- You may also enjoy previous articles in the Alfresco Developer series at ecmarchitect.com:

Alfresco Developer: Intro to the Web Script Framework Page 27 of 28
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
http://ecmarchitect.com/
http://ecmarchitect.com/images/articles/alfresco-webscripts/web-script-article-project.zip

ecmarchitect.com

“Implementing custom behaviors”, September, 2007.

“Working with Custom Content Types”, June, 2007.

“Developing custom actions”, January, 2007.
Alfresco wiki pages related to this topic:

Alfresco Web Scripts wiki page

Alfresco Web Script Runtimes wiki page

Alfresco JavaScript API wiki page

Alfresco Template Guide (FreeMarker info) wiki page

For deployment help, see the Client Configuration Guide and Packaging and Deploying

Extensions in the Alfresco wiki.

For general development help, see the Developer Guide.

« For help customizing the data dictionary, see the Data Dictionary wiki page.

Luis Sala's presentation on Web Scripts at the West Coast Alfresco+Liferay Meetup along with
a podcast of the audio portion of the presentation is available at Luis' Fresh Talk blog.
Learn more about JSON at json.org and FreeMarker at freemarker.sourceforge.net.
The jMaki Project is a framework for building Ajax-enabled, Java web applications. Included as
part of it is a proxy you can use to work around the cross-domain scripting limitation if you
don't want to write your own.
The JSR-168 Portlet Specification is available on the Java Community Process site.

About the Author

Jeff Potts is the Enterprise Content Management Practice Lead at Optaros, a

| leading Open Source and Next Generation Internet consultancy. Jeff has fifteen
years of experience implementing content management, collaboration, and other
/' knowledge management technologies for a variety of Fortune 500 companies. Jeff
" lives in Dallas, Texas with his wife and two kids. Read more at ecmarchitect.com.

Alfresco Developer: Intro to the Web Script Framework Page 28 of 28

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/
https://ajax.dev.java.net/download.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://www.ecmarchitect.com/
http://www.optaros.com/
http://freemarker.sourceforge.net/
http://www.json.org/
http://blogs.alfresco.com/luissala/2007/09/12/alfresco-and-liferay-meetup-podcast-1-web-scripts/
http://wiki.alfresco.com/wiki/Data_Dictionary_Guide
http://wiki.alfresco.com/wiki/Developer_Guide
http://wiki.alfresco.com/wiki/Packaging_And_Deploying_Extensions
http://wiki.alfresco.com/wiki/Packaging_And_Deploying_Extensions
http://wiki.alfresco.com/wiki/Web_Client_Configuration_Guide
http://wiki.alfresco.com/wiki/Template_Guide
http://wiki.alfresco.com/wiki/JavaScript_API
http://wiki.alfresco.com/wiki/Web_Script_Runtimes
http://wiki.alfresco.com/wiki/Web_Scripts
http://wiki.alfresco.com/wiki/Web_Scripts
http://ecmarchitect.com/archives/2007/01/10/732
http://ecmarchitect.com/images/articles/alfresco-content/content-article.pdf
http://ecmarchitect.com/archives/2007/09/26/770

	Introduction
	What is the Web Script Framework?
	Examples
	Hello World Example
	SomeCo Whitepaper User-contributed Ratings Examples
	Listing all Whitepapers
	Retrieving the Rating for a Whitepaper
	Posting a Rating with a Java-backed Web Script
	Revisiting the rating.get.html.ftl template
	Deleting ratings
	Example summary
	Dealing with the cross-domain scripting limitation
	Deploying and Testing
	Conclusion
	Where to find more information
	About the Author

