Alfresco Developer: Advanced Workflows

November, 2007
Jeff Potts

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor,
San Francisco, California, 94105, USA.

http://www.ecmarchitect.com/
http://www.ecmarchitect.com/

ecmarchitect.com

Alfresco Developer: Advanced Workflows

November 2007
Jeff Potts
Table of Contents

0318 (06 11 et 0) DO UURRR 4
WHhat 1S @ WOTKEIOW 7.ttt ettt et e e et e e st e e st e e snsaaeeeeeessbaeaaeesennnssnes 4
WOTKEIOW OPLIONS. ..ceeniiiiiiiieiitie ettt ettt ettt et e s bt e bt e st e e e eanneneees 6
ATESCO WOTKEIOW. ...ttt ettt st et esabe e e e e 7
TBPM COMCEPLS. ...ttt ettt et st et e sae e s tee s e e e e maeeeeaneeees 9
DEPIOYING PIOCESSES. . eeeeurreeeuireeruiieeriteeerteeetteeatteessreesseeeasseesssseesasseesasseesseesssseeesnseeessseessssessnssesenssnes 18
Wiring a process to the AITeSCO Ul......co.iiiiiiiiiii ettt 20
Define a workflow-specific content MOdel..........ccocuiiiiiiiiiiiiiiiiiie e e 21
Update web-client-config-CuStOm.XIML........cueeiiiiiiriiiieiiie et eriee e e e eeeeeree e reeesenaeeeeeeeeeenes 23
EXternalize the SINES.ccoiuiiiiiieeiie ettt ettt et e ettt e s ateesate e e s e enebaaeeeeeennnssees 23
IMplementation SUMIMATYcccueieiuieerieeeiieeeieeeetreesteeessseeestbeesssseesssseesssaeesssaeessseeessseeanssesssssessnssnes 24
SomeCo Whitepaper submission €XamPIe.........c..eevrveeriiiieriiiieniiieeniieenieeesiee et et eesreeeereeeseeeeees 25
BUSINESS ProCess AESCIIPLION.ieruiieeriiieeriieeiteeeitee et eeeiteeetteestteesbeeesabeeesabeeesnseessassssseeeesssnnnnes 25
HIGN-1EVEL STEPS ettt ettt e st e et e e st e e abee sttt e e e e e e nnreee 25
Step 1: Implement the basic flow and workflow user interface.............cccoevcveeeviienniieeeeinniieenn. 26
Step 2: Implement web SCripts and aCHIONS.coeviieriiiiiiiieiiee ettt e e e e 40
Step 3: Add a timer to the third-party task...........coocveiviiiiiiiiiniie e 47
Step 4: Configure the workflows for deployment..............coceeviiriiiniiniiinieneee e 48
COMCIUSION. ¢ttt et ettt e s et et e s bt e bt e s et e et esab e e be e st e e bt e eaneebeesaneenanee 48
Deploying and LESTINE.....cccveeriiiiiiirieeiierte ettt ettt e s b e s ae e et sae e s neesaeeeree e 49
Where t0 find MOre INfOrMAtION.ccviiiiirieriieieeeeeee et 49
ADOUL The QUINOT ..ottt e et e e et e e e et e e e e s abaeeeesnsaeeeeessaeeeennnsaeaaeeeeas 50

Alfresco Developer: Advanced Workflows Page 2 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Alfresco Developer: Advanced Workflows
November 2007
Jeff Potts

Introduction

This article is about the advanced workflow functionality available in Alfresco through its embedded
JBoss JBPM workflow engine. First, because “workflow” can mean different things to different people,
I'll talk about my definition of the term. Then, I'll dive into fundamental jBPM concepts that will help
you understand how processes are defined and how the workflow engine actually works. (Those who
use jJBPM separate from Alfresco might even find this section helpful). Once that foundation is in
place, I'll walk through an example that features many of the different concepts.

The example continues the “SomeCo” examples covered in earlier papers. In it, we'll implement a
business process that helps SomeCo route whitepapers for review and approval by internal as well as
external parties.

What is a workflow?

When Alfresco released version 1.4 of the product, they made a huge leap forward in enterprise
readiness. That was the release when Alfresco embedded the JBoss jBPM engine into the product
which meant that enterprises could route Alfresco repository content through complex business
processes. A content repository without the ability to facilitate business processes that produce,
consume, or transform the content within it is little more than a glorified file server, so this was a
welcome addition.

But before we geek out on the wonders of graph based execution languages let's agree on what the term
workflow means. Generically, a workflow is “a reliably repeatable pattern of activity enabled by a
systematic organization of resources...that can be documented and learned”'. The term has been around
since people started studying the nature of work in the early 20" century in an effort to streamline

1 http://en.wikipedia.org/wiki/Workflow

Alfresco Developer: Advanced Workflows Page 3 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://en.wikipedia.org/wiki/Workflow

ecmarchitect.com

manufacturing processes.

In fact, in the world of ECM, it is sometimes helpful to think of an assembly line or manufacturing
process when thinking about how content flows through an organization. Content is born of raw
material (data), shaped and molded by one or more people (collaboration) or machines (systems),
reviewed for quality, and delivered to consumers. Content may go through a single process or many
sub-processes. Content may take different routes through a process based on certain aspects of that
content. The output of an organization or department of knowledge workers is essentially the content
that comes rolling off the assembly line (the collection of workflows that define that organization's
business processes).

Although not always formalized or automated, almost everyone in modern society has been involved in
a workflow in some way:

e When you submit an insurance claim, you are initiating a workflow.

e If you witness drunk and disorderly conduct on an airline flight and are asked to provide a
statement to the airline, you are participating in a workflow. (Seriously, it happens more often
than you'd think).

e When you check on the status of your loan application, you are asking for metadata about a
running workflow.

e When someone brings you a capital request that requires your approval because it is over a
certain dollar amount, a characteristic of that request (the dollar amount) has triggered a
decision within the workflow that routes the capital request to you.

e When you give the final approval for a piece of web content to be published, it is likely you are
completing a workflow.

As varied as these examples are, all of them have a couple of things in common that make them
relevant to ECM: (1) They are examples of human-to-human and, in some cases, human-to-machine
interaction and (2) They are content- or document-centric.

These are two very important characteristics that help clarify the kind of workflow we're talking about.
There are standalone workflow engines (in fact, jJBPM is one of them) that can be used to model and
execute all sorts of “repeatable patterns of activity”, with or without content, but in the ECM space, the

Alfresco Developer: Advanced Workflows Page 4 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

patterns we care most about are those that involve humans working with content.'

Workflow options

Some of you are saying, “You're right. Workflows are everywhere. I could really streamline my
organization by moving processes currently implemented with email, phone calls, and cubical drive-
bys into a more formalized workflow. What are my options?” Let's talk about three: Roll your own,
Standalone workflow engines, and Embedded workflow engines.

Roll your own. People are often tempted to meet their workflow requirements with custom code. Very
basic systems might be able to get by with a single flag on a record or an object that declares the status
of the content like “Draft” or “In Review” or “Approved”. But flags only capture the “state” of a piece
of content. If you want to automate how content moves from state to state, the coding and maintenance
becomes more complex. Sure, you can write code as part of your application that knows that once Draft
documents are submitted for review, they need to go to Purchasing first and then to Finance, if and
only if the requested cash outlay is more than $10m but do you really want to?

People intent on rolling their own workflow often realize the maintenance problem this creates, so they
create an abstraction used to describe the flow from state-to-state that keeps them from embedding that
logic in compiled code. Once they've done that, though, they've essentially created their own
proprietary workflow engine that no one else in the world knows how to run or maintain. And with all
of the open source workflow engines available, why would you want to do that? So the “roll your own”
option is really not recommended for any but the most basic workflow requirements.

Standalone engines. There are a number of standalone workflow engines—sometimes more broadly
referred to as BPM (Business Process Management)—both open source and proprietary. These are
often extremely robust and scalable solutions that can be used to model, simulate, and execute any
process you can think of from high-volume loan processing to call center queue management. Often,
these workflow engines are implemented in conjunction with a rules engine which lets business users
have control over complicated if-then-else decision trees.

Standalone engines are most appropriate for extremely high volume or exceedingly complex solutions

1 Of course document-centric workflows may include fully automated steps and machine-to-machine interactions—the
point is that document-centric workflows in which humans review, approve, or collaborate in some way are in the scope
of the discussion while processes which run lights-out system-to-system orchestration or integration are not.

Alfresco Developer: Advanced Workflows Page 5 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

involving multiple systems. Another good use for standalone engines is when you are developing a
custom application that has workflow requirements. Standalone engines can usually talk to any
database or content management repository you might have implemented, but they won't be as tightly
integrated into the content management system's user interface as the workflow engine built-in to the
CMS. For this reason, for content-centric solutions that operate mostly within the scope of the CMS, it
is usually less complicated (and less costly) to use the workflow engine embedded within the CMS,
provided it has enough functionality to meet the business' workflow requirements.

Embedded workflow engines. Almost every CMS available today, whether open source or
proprietary, has a workflow engine of some sort embedded within it. However, the capability of each of
these vary widely. If you are in the process of selecting a CMS and you already know the kind of
workflow requirements you'll face, it is important to understand the capabilities of the workflow engine
embedded within the systems you are considering before making a final selection.

The major benefit of leveraging an embedded workflow engine is the tight level of integration for users
as well as developers. Users can initiate and interact with workflows without leaving the CMS client.
Typically, developers customizing or extending the CMS can work with workflows using the core
CMS APL

Alfresco workflow

Alfresco has two options for implementing workflows within the product. For very simplistic
workflows, non-technical end-users can leverage Alfresco's Basic Workflow functionality. For more
complex needs, Alfresco leverages the embedded JBoss jBPM engine to provide Advanced Workflow
capability.

Basic workflows are a nice end-user tool. You should know how they work and what the features and
limitations are so you can make good decisions about when to use them. Basic workflows use folders
and a “forward step/backward step” model to implement serial processes. When a piece of content is
dropped in a folder, a rule is triggered that associates a “forward step” and a “backward step” (one or
the other or both) with the content. These steps are tied to Alfresco actions such as “Set a property” or
“Move the content to a specified folder”. End users can then click on the appropriate step for a given
piece of content.

For example, suppose we have a simple submit-review-approve process in which content is submitted,

Alfresco Developer: Advanced Workflows Page 6 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.ecmarchitect.com/

ecmarchitect.com

then reviewed, then approved or rejected. One way to implement this with basic workflows is to use
three folders—Iet's say they are called “Draft”, “In Review”, and “Approved”—each of which have a
rule set that applies a basic workflow. The workflow for content in the Draft folder would have a single
forward step labeled “Submit” and its action would move content to the “In Review” folder and send
an email to the approver group. The “In Review” folder would have a workflow in which the forward
step would be labeled “Approve” and it would copy the content to an “Approved” folder. The
backward step would be labeled “Reject” and its action would move the content back to the “Drafts”
folder.

You can see that basic workflows are useful, but limited with regard to the complexity of the business
processes they can handle.

Although we haven't yet covered the detailed capabilities of Alfresco advanced workflows, I thought it
would be a good idea to compare basic and advanced workflows at a high level now so we can leave
the topic of basic workflows behind and spend the rest of the article on advanced workflows:

Alfresco basic workflows... Alfresco advanced workflows...
e Are configurable by non-technical end- e Are defined by business analysts and
users via the Alfresco web client developers via a graphical Eclipse plug-in

e Leverage rules, folders, and actions or by writing XML

e Can only handle processes with single- ° Levera.ge the power of the c?mbedded
step, forward and/or backward, serial JBoss jBPM workflow engine
flows e Can model any business process including
e Do not support decisions, splits, joins, or decisions, sp h‘ts’ joins, para}lel flows, sub-
parallel flows processes, wait states, and timers
e Do not maintain state or metadata about e Can include business logic written either

in JavaScript or Java, either of which can

the process itself
access the Alfresco API

e Maintain state and process variables
(metadata) about the process itself)

Now that you understand the definition of workflow in the context of ECM, some of the options for
implementing workflow requirements, and the options within Alfresco specifically, it's time to dive in

Alfresco Developer: Advanced Workflows Page 7 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

to the gory details of the JBPM engine.

JBPM concepts

This section is a bit like vegetables—somewhat ugly and unpleasant tasting but ultimately good for you
(no offense to my vegetarian friends). While it is possible to modify the out-of-the-box workflows to
suit your needs without understanding the details of how the jJBPM engine works, I recommend you
pinch your nose and take a bite. You'll thank me later when you are ready to do something complex
and completely unlike any of the out-of-the-box examples.

What is the jBPM engine?

JBoss jBPM is an open source, standalone workflow engine'. It can run in any servlet container—it
doesn't require JBoss Application Server. The jBPM engine is responsible for managing deployed
processes, instantiating and executing processes, persisting process state and metadata to a relational
database (via Hibernate), and tracking task assignment and task lists.

Process definitions

jBPM is built on the idea that any process can be described as a graph or a set of connected nodes.
Workflows are described with “process definitions” using an XML-based language called Java Process
Definition Language (jJPDL). jJPDL is one example of a graph based execution language. Others include
BPEL for service orchestration and SEAM pageflow.

In jPDL, each node represents a step in a workflow. Connections between nodes signify the transition
from one step to another. Consider the figure below. We see a relatively simple process with 5 nodes.
By looking at the transitions we see that the path of execution will always be from node A to node B.
Node B has two outgoing paths. One path is to node C and the other to node D. The paths converge on
node E. Note that from the diagram it is impossible to tell which path will be taken. It's also possible
that both could be followed simultaneously.

1 JBoss rightly calls jJBPM a “platform for graph based execution languages”. “Workflow” as it is defined here is one of
several different domains that can be addressed with a graph based execution language. So jBPM is more than just a
workflow engine, but for this article, that's all we care about.

Alfresco Developer: Advanced Workflows Page 8 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

The node's type determines how it behaves. So you might have a node that splits execution into several
paths (like node B) or a node that joins multiple paths of execution into a single path (like node E).
You might have a node that calls some other system and waits to hear back from that system before
proceeding. We'll explore the different node types available and briefly talk about creating your own
node types shortly.

Tokens

A token is like the “You Are Here” flag for a process. The token moves from node-to-node as the
process is executed. But it doesn't move on its own. Tokens only move when they are signaled. Let's
look at an example. In the figure below, when we execute the process, the token is at Node A. If we
signal the token, it will take the only path available to it which is to move to Node B where it will wait
for a signal. From Node B there are multiple paths available. If we signal the token without specifying
which path to take, it will take a default path. Or, we could tell it which path to take when we send it
the signal.

Tokens can have children. For example, in the figure we just looked at, suppose we wanted to follow
both paths. In that case, as shown in the figure below, the token would spawn two child tokens, one for
the path from Node B to Node C and one from Node B to Node D. When the paths converge, the child
tokens go away and the parent token resumes.

Alfresco Developer: Advanced Workflows Page 9 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Why should we care about tokens? I'm sure there are lots of reasons but a few that come to mind are
(1) when you write your own node types you are responsible for how tokens are signaled (2) process
variables (more on those shortly) are scoped to a token, and (3) if a process ever gets stuck you may
need to signal the token manually.

Node types

I mentioned earlier that the node type determines the node's behavior which begs the question: What
node types are available?

Node Type Description
Start-state Only one allowed per process definition. Only outgoing transitions are allowed.
Fork Spawns multiple concurrent paths of execution.
Join Joins multiple paths into a single path. Becomes a wait state until all tokens have

reached the join.

Decision Choice between multiple paths of execution. We'll see examples of how to
implement the logic for a decision later in the article.

Node Plain old node. Good for containing an action which might execute business
logic.

State A wait state. Execution does not proceed until the node is explicitly signaled.

Process State Executes a sub-process. Behaves as a wait state while the sub-process executes.

Alfresco Developer: Advanced Workflows Page 10 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Node Type Description
Task Node A node that contains one or more tasks assigned to humans.
End State Only one allowed per process definition. Only incoming transitions are allowed.

It is important to note that if your application has a requirement that isn't addressed by one of the out-
of-the-box node types you can add your own. And, if the behavior of a node type isn't exactly what you

need, you can extend it.

If we implemented the diagram shown previously in which node B is a fork and node E is a join, the

jPDL would look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<process—-definition xmlns="" name="simple-process">
<start-state name="start">
<transition name="" to="Node A"></transition>

</start-state>
<node name="Node A">

<transition name="" to="Node B"></transition>
</node>
<fork name="Node B">

<transition name="" to="Node C"></transition>

<transition name="tr2" to="Node D"></transition>
</fork>
<node name="Node C">

<transition name="" to="Node E"></transition>
</node>
<node name="Node D">

<transition name="" to="Node E"></transition>
</node>
<join name="Node E">

<transition name="" to="endl"></transition>
</join>

<end-state name="endl"></end-state>
</process—-definition>

Actions

So far we've seen that a process can be modeled as a collection of nodes connected via paths or

transitions. A common requirement is to be able to execute some code or business logic at certain

Alfresco Developer: Advanced Workflows Page 11 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

points within the process. For example, maybe you want to send an email or perhaps you want to
increment a counter that keeps track of how many times a node has been executed. Actions are the
hooks that make this happen.

What triggers an action? As a token propagates through the graph it fires events. Examples include
things like entering a node, leaving a node, or following a transition.

Actions can be a beanshell expression or a Java class. In the context of Alfresco, actions can also be
written using JavaScript which can make use of the Alfresco JavaScript APL

In the example below we see a task-node named “review” with a task called “scwf:reviewTask”. The
task has script associated with its “task-create” event. Don't worry about what the script is doing for
now. This is just an example of associating business logic with an event.

<task—-node name="review">

<task name="scwf:reviewTask" swimlane="reviewer">
<event type="task-create">

<script>
if (bpm_workflowDueDate != void) taskInstance.dueDate =
bpm_workflowDueDate;
if (bpm _workflowPriority != void) taskInstance.priority =
bpm_workflowPriority;
</script>
</event>

Here's an example that uses the “action” tag to associate Alfresco JavaScript with a transition. This
particular JavaScript runs an action against every piece of content in the workflow package.

<task-node name="addAspect">
<transition name="transToReview" to="review">

<action class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
<script>
var scAspectQName = "{http://www.someco.com/model/content/1.0}webable";
var addAspect = actions.create ("add-features");
addAspect .parameters|["aspect-name"] = scAspectQName;
for (var 1 = 0; 1 < bpm _package.children.length; i++) {
if ('bpm_package.children[i] .hasAspect (scAspectQName)) {
addAspect.execute (bpm_package.children[i]) ;

Alfresco Developer: Advanced Workflows Page 12 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

</script>
</action>
</transition>

</task—-node>

Note that in the Alfresco JavaScript example, the jPDL points to a Java class. In this case, Alfresco has
provided an action class that executes Alfresco JavaScript. But you can write your own action classes
with Java as well as we shall soon see in the example.

Process Variables

Often, there is metadata about a process that needs to be tracked. A due date or a priority flag are two
examples. A due date isn't really a property of the content being routed through the workflow—it's a
property of the process itself. JBPM gives us the ability to store this kind of data as part of the running
process through process variables.

Process variables are name-value pairs that will get persisted with the rest of the process state.
Variables can be scoped to a specific token. By default, they are scoped to the root token so they are
effectively global.

In the example below, we use the “script” element to set a variable called scwf_tempCnt equal to 0
when the token enters the node.

<event type="node-enter">
<script>
<variable name="scwf_tempCnt" access="write"/>
<expression>
scwf_tempCnt = 0;
</expression>
</script>
</event>

Elsewhere in the process we could read the value of the variable with an expression like:
#{scwf_tempCnt}.

Tasks

A task is a step in a workflow that requires human interaction. jJBPM maintains a list of tasks assigned
to each participant. How users interact with the task list is up to each application. In Alfresco, a dashlet
displays a to-do list for the currently logged in user. As users complete their tasks the tasks are
removed from the to-do list. An empty to do list is shown below.

Alfresco Developer: Advanced Workflows Page 13 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

My Alfresco

== My Alfresco Dashboard

B% Configure
Configure this view and build your personal Alfresco dashboard

My Tasks To Do

Mo tasks found.

Task Assignment (Swimlanes, “Initiator’’ swimlane, actors, pooled actors)

If tasks are steps a human performs, how do tasks get associated with the people who need to perform
them (actors)? One of the child elements of the “task” element is “assignment”. The assignment
element points to a Java class that is an instance of AssignmentHandler. It handles assigning the task to
an actor. Alfresco saves us some work here—they provide an AssignmentHandler out-of-the-box. We'll
see an example of how it can be used momentarily.

Often, a process has the notion of a role in which multiple tasks during the process get assigned to the
same actor playing that role. For example, suppose we are defining a process that contains multiple
tasks performed by “marketing”. Rather than assign the marketing group or individual repeatedly to
each task, it would be nice if we could make the assignment once and then tell the other tasks to use the
same assignment. In jJBPM this is implemented through swimlanes. An actor can be assigned to a
swimlane, and then all tasks that need to be performed by the same actor refer to the swimlane. The
snippet below shows what this looks like in jPDL.

<swimlane name="marketing">
<assignment class="org.alfresco.repo.workflow. jbpm.AlfrescoAssignment">
<pooledactors>#{people.getGroup ('GROUP_marketing') }</pooledactors>
</assignment>
</swimlane>

<swimlane name="engineering">
<assignment class="org.alfresco.repo.workflow. jbpm.AlfrescoAssignment">
<pooledactors>#{people.getGroup ('GROUP_engineering') }</pooledactors>
</assignment>
</swimlane>

<task-node name="marketingReview">
<task name="scwf:marketingReview" swimlane="marketing"></task>
<transition name="transTolLegal" to="engineeringReview"></transition>
<transition name="transToRejected" to="rejected"></transition>
</task-node>

Alfresco Developer: Advanced Workflows Page 14 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

<task-node name="engineeringReview">
<task name="scwf:engineeringReview" swimlane="engineering"></task>
<transition name="transToMarketing" to="finalMarketingReview"></transition>
<transition name="transToRejected" to="rejected"></transition>

</task-node>

<task-node name="finalMarketingReview">
<task name="scwf:finalMarketingReview" swimlane="marketing"></task>
<transition name="transToApproved" to="approved"></transition>
<transition name="transToRejected" to="rejected"></transition>
</task-node>

In this example we're defining two swimlanes: “engineering” and “marketing”. The engineering
swimlane is assigned to the “engineering” group. The marketing swimlane is assigned to the
“marketing” group. Each of the three tasks is assigned to the appropriate swimlane using the
“swimlane” attribute of the “task” element.

A special swimlane exists called “initiator”. This swimlane always has the actor that started the
workflow. If you want to assign one or more tasks to the initiator, add the initiator swimlane to the
process definition like this:

<swimlane name="initiator" />

and then use the swimlane attribute to make the assignment.

If you have already used Alfresco Advanced Workflows you know that in the sample workflows the
initiator assigns the review step to a user or group by selecting a value in the user interface. We'll see
how that value makes its way into the task assignment a little later.

Pooled Actors

When defining a business process it is important to understand how the participants in the process will
do the work. One specific area that needs to be considered is whether to use “pooled actors” for a given
task. Suppose, for example, you assigned a task to a group of ten people. You could iterate through the
group and assign a task to each and every member of the group and then not consider the task complete
until all actors have taken action. An alternative is to use pooled actors. Using a pool, all members of a
group are notified of the task, but as soon as one actor takes “ownership” of the task, it is removed
from everyone else's to do list. The owner can then either complete the task or return it to the pool. If it
is returned to the pool, all members of the group see the task in their to do list until another person
takes ownership or completes the task. To use pooled actors, use the “pooledactors” child element of

Alfresco Developer: Advanced Workflows Page 15 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

the “assignment” element instead of the “actor” element.

The decision to use pooled actors or not depends entirely on the business process—there is no preferred
approach.

JBPM Process Designer

One of the nice things about jJBPM is that a graphical tool is available as an Eclipse plug-in for creating
and deploying process definitions called the Graphical Process Designer (GPD). Marketing guys for
workflow tools love to say things like, “Using the graphical process designer, business analysts can
create advanced workflows without writing code!”. While it is a handy tool, particularly when you are
first laying out a process, in the real world, you'll find yourself switching to the source tab fairly
quickly.

Here's what the “Diagram” tab looks like for the five node process we defined earlier.

Pl = = 0| 5= outline 2 =0
B -

L fﬂelm @ <<Start State>>
7, Marqu...
0:' q start v @ simple-process

Start

b O start

=% State <<Node>>
® End Node A D end1
o Fork b O Node A
glzjoin. . 1 ol <<Fork=>> ! b @ Node B
caDecision b» @ Node C
Node tr2 o
¥ Task T — B — i

Node Node C Node D b O Node E
& Process

State
3 Super o

State Se <<Join>>
— Transit...

=<End State>>

=
endl

Diagram | Swimlanes | Deployment | Design | Source

The Diagram tab is used to lay out the process by selecting node types from the palette and clicking on
the canvas. The Transition tool is used to connect the nodes. Node properties can be edited in the tree
view of the process or nodes can be double-clicked to open a properties editor. At any time you can
switch to the Source tab to see and edit the underlying XML.

Alfresco Developer: Advanced Workflows Page 16 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Deploying processes

If you look at the out-of-the-box process definitions you'll notice that Alfresco chose to put all process
definitions in the same directory. This is a bit annoying to me because it breaks the GPD deployment
tool. So, when organizing your work, I recommend you not follow Alfresco's example and instead put
each process definition in its own directory and name the jPDL file “processdefinition.xml”.

If you are writing complex processes that depend on resources beyond just the definition itself, you can
optionally package those dependencies along with your process definition into a Process Archive
(PAR) file (Like a JAR file, a PAR file is just a zip). The “Java Classes and Resources” section of the
Deployment tab is used to associate dependencies with the process so the GPD knows to include them
with the PAR. If you choose not to create a PAR, dependent classes can reside anywhere on the
Alfresco classpath, preferably right along side your other classes in the extension directory.

Once you've defined your process and decided how to package it, the process definition has to be
deployed to the jJBPM runtime. Let's look at two options for deploying a jJBPM process definition to
Alfresco: (1) use the deployment tab in the GPD or (2) deploy the process definition alongside your
other web client customizations in the Alfresco extension directory.

The deployment tab is the easiest option and is very handy when you are still developing and
debugging the process because you don't need to restart the application server between deployments.
The graphic below shows a screenshot of the deployment tab.

The Deployment Server Settings tell the plug-in how to communicate with the jJBPM deployment
process. The Test Connection button will verify the plug-in is able to communicate to the deployer
process.

Alfresco Developer: Advanced Workflows Page 17 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

P] &3

Deployment

Files and Folders

=0

Java Classes and Resources

[=

o= Outline &3

" (5]

< (@ simple-process

Select the files and folders to include Select the Java classes and resources b O start
in the process archive. to include in the process archive. O end1
¥ % gpd.xml b e b O Node A
[] %] processdefinition xml b O Node B
[¥] I processimage.jpg b @ Node C
b @ Node D
b @ NodeE

Local Save Settings

Choose if and where you wish to save
the process archive locally.

Deployment Server Settings

Specify the settings of the server you
wish to deploy to.

Server Name: localhost

[] Save Process Archive Locally

Server Port:

Location: 8080

im/deployprocess

Deploy Process Archive...

Diagram | Swimlanes Deployment | Design | Source

When you click “Deploy Process Archive...” the process will be uploaded to the jJBPM engine. If the
process has already been deployed it will get versioned. If either the Test Connection button or the
Deploy Process Archive button result in an error, check the application server log for clues.

Another deployment alternative is to use a Spring bean. The snippet below shows how to point to a
single process definition.

<bean id="extension.workflows.workflowBootstrap" parent="workflowDeployer">
<property name="workflowDefinitions">
<list>
<props>
<prop key="engineId">jbpm</prop>
<prop key="location">alfresco/extension/workflows/simple—
process/processdefinition.xml</prop>
<prop key="mimetype">text/xml</prop>
<prop key="redeploy">true</prop>
</props>
</list>
</property>
</bean>

Alfresco Developer: Advanced Workflows
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

Page 18 of 49

ecmarchitect.com

If you have multiple workflows to deploy using this approach use multiple “props” elements.

The engineld must be set to “jbpm”. Maybe at some point other engines will be supported but for now,
JBPM is the only choice.

The location is any location on the classpath, but to be consistent with how customizations are
deployed, I recommend standardizing on the Alfresco extension directory or, as in this example, a
directory called “workflows” within that.

The mimetype setting is “text/xml” when deploying the processdefinition.xml file. If you choose to
deploy the process as a PAR, set the location to the path of the PAR file and set the mimetype to
“application/zip”.

The redeploy flag tells Alfresco whether or not it should automatically redeploy the process on startup.

During development, if you are deploying your processes via Spring you probably want this to be set to
true. Once you get to production, set it to false to avoid needlessly creating new versions of the process
definition every time the server is restarted.

There are other deployment options: jJBPM ships with an Ant task called “deploypar”, the jJBPM
console (more on that later) can be used, and processes can be deployed programmatically using the
JBPM API. This article won't cover any of these alternatives, but it's nice to know they are there if you
need them.

You may be wondering what happens to running workflow instances when a new version of the
process definition is checked in. The answer is that jJBPM handles that—it makes sure that running
workflows continue to run with their original process definition. All new workflows will use the most
current process definition.

Wiring a process to the Alfresco Ul

So far we've talked about the definition of workflow, specifics around the jJBPM engine, and process
deployment but we haven't addressed how to expose a process to Alfresco web client users.

For those familiar with extending the content model the steps for integrating a custom workflow with
the Alfresco web client UI will be very familiar. The process is nearly identical. At a high level it
consists of the following:

e Define a content model for your workflow in which workflow tasks map to content types.

Alfresco Developer: Advanced Workflows Page 19 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

e Update web-client-config-custom.xml to tell Alfresco how to expose the process metadata to
the web client user interface.

e Externalize the strings.

We don't need to re-hash the details of custom content models here—I'll assume you already know how
to extend Alfresco's content model. If these are new concepts to you I recommend you take a look at
some of the resources cited in the “More Information” section at the end of this article.

Define a workflow-specific content model

The workflow-specific content model defines the data structure for the process. Workflow models use
the same fundamental building blocks—types, properties, aspects, and associations—as “normal”
Alfresco content model definitions. In fact, if you already have a custom model, you can define your
workflow-specific model in the same content model XML file, although to reduce confusion, I
recommend you keep your content types separate from your workflow types by using at least two
different model files.

What is the purpose of the workflow-specific model? Think of it like any other content model. Custom
content models are used to define the metadata we want to capture about a piece of content. The
metadata (properties) are grouped into types and aspects. By virtue of defining these properties as part
of the content model, Alfresco takes care of persisting the data to the underlying database.

Workflow models function in the same way. Suppose you have a process in which three different
departments are involved in an approval process. Maybe you'd like the workflow initiator to be able to
define which of those departments are required approvers and which are optional or “FYI” reviewers.
A workflow model would define how that information is going to be stored.

As in other content models, you don't have to start from scratch. Alfresco ships out-of-the-box with
some workflow-specific types already defined. There are two model definition files related to this. One
is called called bpmModel.xml. It resides in your Alfresco web application root under WEB-
INF/classes/alfresco/model. The other is called workflowModel.xml and it resides under WEB-
INF/classes/alfresco/workflow.

The bpmModel file contains the lowest-level workflow classes such as the base definition for all tasks
and the default start task. It also contains important aspects such as a set of “assignee” aspects that
define associations between tasks and users or groups.

Alfresco Developer: Advanced Workflows Page 20 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

The workflowModel file contains the content model for the out-of-the-box process definitions. This
model file offers a lot of potential for reuse in your custom processes. For example, if your process
starts by allowing the submitter to specify a list of several people to receive a task, you could use the
submitParallelReviewTask. If you want to base an approval on the percentage of individuals who
approve a task, you can use the submitConcurrentReviewTask. Of course just like any model you are
free to use these as-is, extend them, or not use them at all.

When users interact with the workflow via the web client, Alfresco will use the workflow content
model and the web-client-config-custom.xml file to figure out what metadata to expose to the Ul and
how to present it just as it does when viewing content properties. Alfresco uses the name of the
workflow task to figure out the appropriate workflow content type. So, all tasks in which there are
Alfresco web client user interactions must be given a name that corresponds to the name of a
workflow content type.

Consider this process definition snippet:

<start-state name="start">
<task name="scwf:submitGroupReviewTask" swimlane="initiator" />
<transition name="transToAddAspect" to="addAspect" />
</start-state>

The snippet shows a start-state of a process with a task assigned to the initiator. The task name must
match a corresponding workflow content type. Looking in the custom workflow content model file we
find the matching type definition:

<type name="scwf:submitGroupReviewTask">
<parent>bpm:startTask</parent>
<mandatory-aspects>
<aspect>bpm:groupAssignee</aspect>
</mandatory-aspects>
</type>

The type is a child of bpm:startTask and declares a mandatory aspect. In this particular case, the type
will keep track of the group the initiator picks when submitting the workflow. A swimlane within the
process definition can then read the selected group and pass that to the assignment class.
<swimlane name="reviewer">
<assignment class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">

<pooledactors>#{bpm groupAssignee}</pooledactors>
</assignment>

Alfresco Developer: Advanced Workflows Page 21 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

‘ </swimlane>

Note the use of the underscore to separate the namespace from the property name.

Update web-client-config-custom.xml

The next step is to tell Alfresco how to display the process metadata. This works exactly like custom
content types. Continuing the example we just looked at, we need to expose the group picker to the
web client so the initiator can find and select a group. The snippet below shows how.

<config evaluator="node-type" condition="scwf:submitGroupReviewTask"
replace="true">
<property-sheet>
<separator name="sep2" display-label-id="users_and_roles" component-—
generator="HeaderSeparatorGenerator" />
<show-association name="bpm:groupAssignee"/>
</property-sheet>
</config>

Externalize the strings

The final step is to externalize the strings used to display things like the workflow title and description
that show up in the “Start Advanced Workflow” dialog, and titles and descriptions for individual tasks.
The format of the identifiers for these strings follow a specific format. Look at the snippet below as an
example:

scWorkflowModel related strings
scwf_workflowmodel.type.scwf_submitGroupReviewTask.title=Start SC Web Review
scwf_workflowmodel.type.scwf_ submitGroupReviewTask.description=Submit SC Web
documents for review & approval to a group of people
scwf_workflowmodel.type.scwf_reviewTask.title=SC Web Review
scwf_workflowmodel.type.scwf_reviewTask.description=Review documents for
publication to the SC Web
scwf_workflowmodel.type.scwf_approvedTask.title=Content Approved
scwf_workflowmodel.type.scwf_ approvedTask.description=Content Approved for
publication to the SC Web
scwf_workflowmodel.type.scwf_rejectedTask.title=Content Rejected
scwf_workflowmodel.type.scwf_rejectedTask.description=Content must be revised
before being published to the SC Web

Alfresco Developer: Advanced Workflows Page 22 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

process definition related strings
scwf_submittoscweb.workflow.title=Submit to SC Web
scwf_submittoscweb.workflow.description=Review and approve SC Web content

scwf_submittoscweb.node.start.transition.transToAddAspect.title=Set SC Web

properties
scwf_submittoscweb.node.start.transition.transToAddAspect.description=System sets

SC Web properties

scwf_submittoscweb.node.addAspect.transition.transToReview.title=Review
scwf_submittoscweb.node.addAspect.transition.transToReview.description=Review
prior to publish

I tend to think of these properties as belonging to two groups. One group is the set of model-related
properties. These properties externalize the strings in the workflow content model. The other is the set
of process-related properties. These properties externalize the strings users see when they are working
with the process (the workflow title, the workflow history, etc.).

Implementation summary

We've covered a lot of ground so far. The following summarizes the advanced workflow

implementation steps:

1.

6.

Model the process using the JBPM Process Designer. Just get the process right—don't worry
about node names, events, or actions just yet.

Add logic using Beanshell expressions, Alfresco JavaScript, or Java classes.

Define a workflow content model. If you use a new content model file, remember to update the
custom model-context.xml file to point to the new content model definition XML file.

Update web-client-config-custom.xml to expose workflow tasks to the Alfresco web client.

Create/update a workflow-specific properties file to externalize the strings in both the workflow
model and the process definition.

Deploy the process definition using either the deployment tab or a spring bean config file.

At this point you know enough about advanced workflows to be dangerous. Let's work through an

example to put some of this new knowledge to work.

Alfresco Developer: Advanced Workflows Page 23 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

SomeCo Whitepaper submission example

This example continues the SomeCo example that we've looked at during the past several “Alfresco
Developer” articles. SomeCo is going to use Advanced Workflows to route Whitepapers for approval
before being flagged for publication on the web site. The next section describes the process.

Business process description

Anyone that can log in to Alfresco can submit a whitepaper for publication on the web site. The only
information the submitter needs to specify is the email address of an external third-party reviewer, if
applicable. More on that shortly.

The whitepaper needs to be reviewed by the Engineering team as well as the Marketing team. It doesn't
matter who on the team does the review—SomeCo wants to notify each team and then let one
representative from each team “own” the review task. Either team can reject the whitepaper. If rejected,
the person who submitted the whitepaper can make revisions and resubmit. If both teams approve, the
whitepaper moves on to the next step.

Some whitepapers need to be reviewed by an external third-party. The third-party won't actually log in
to Alfresco—they'll get an email and click a link to approve or reject the whitepaper. If the third-party
doesn't do anything in a certain amount of time, the whitepaper should be automatically approved.

High-level steps

Alright. We're going to implement this process in four major steps. Here's a look at the major steps and
the respective sub-steps:

1. Implement the basic flow and workflow user interface
1. Lay out the process using the JBoss JBPM Graphical Process Designer.
2. Configure swimlanes and add task-nodes with appropriate assignments.
3. Add decision logic.
4

Implement the workflow content model, the workflow client configuration, and the
workflow properties.

Alfresco Developer: Advanced Workflows Page 24 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

5. Deploy and test.
2. Implement web scripts and actions for external third-party integration and other business logic

1. Execute an action to add the “sc:webable” aspect to the whitepaper and set the properties
appropriately.

2. Write a web script to handle approval/rejection via HTTP. The logic needs to grab the
workflow ID and then signal the node with the appropriate transition.

3. Write a jJBPM action class that sends a notification to the third-party email address.
4. Deploy and test.
3. Add a timer to the third-party task

1. Add a timer to the Third Party Review task so that if the third party doesn't respond in a
timely fashion the task will automatically approve.

2. Deploy and test.
4. Configure the workflows for deployment upon startup via Spring.

Now that you know where we're headed at a high-level, let's get into the details.

Step 1: Implement the basic flow and workflow user interface

Layout the process

I'm going to follow the “extension” convention and place my workflow in a file called
processdefinition.xml in a folder called “alfresco/extension/workflows/publish-whitepaper”. It
definitely helps the GPD if each workflow resides in its own folder.

Speaking of which, I'm going to assume you are also using the GPD. If you don't want to, that's fine.
Just create the folder structure I mentioned above and create the empty XML file. If you aren't using
the GPD, skip the rest of the “Layout the process” step and move on to “Swimlanes”.

Using the GPD Diagram tab and the description of the business process, lay out the process as follows:

Alfresco Developer: Advanced Workflows Page 25 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

<<5Start State=>= ® =<=Node=>=
o start o Submit
submit ofjy <<Fork>=

trz2

. ==Task Node== v, <<Task Node=>> |gr <<Task Node>>
3 Revise “Engineering Revi | Marketing Revie\

mFipobve - EEpObve
reject e =<join=>
reject -
L‘?J ==Decision==
All Approved

done .
w6 <<Task Node>> %) <<Decision>>
~Third Party Revie Third Party
approve tr2
7 <=<=Node==
Approved

=<End State=>=
endl

Here are a couple of things to note about the diagram. First, the reason the transition labels between the
Engineering Review and Marketing Review task nodes and the Join are hard to read is because there
are two transitions for each and the GPD overlays them. So each Review task node has two leaving
transitions—one for approve and one for reject.

Next, notice I've named most, but not all, of my transitions. Any transition leaving a task node should
be labeled because a human is going to see that (or its externalized equivalent) in the Ul. Everywhere
else it is convenient if the transitions have names but it isn't required.

Finally, don't spend too much time making the diagram pretty. GPD has an annoying habit of
scrambling the diagram from time-to-time.

Swimlanes

Now edit the source of processdefinition.xml. First, let's fix the process definition element. By default,
the xmlns attribute is blank and the name will contain whatever you specified when you created the
process (if you used “New JBoss jBPM Process Definition” in Eclipse). These need specific values to
work with Alfresco. Update them as follows:

‘<processfdefinition xmlns="urn: jbpm.org: jpdl-3.1" name="scwf:publishwhitepaper">

The name has a namespace on it because we're going to externalize it and we don't want it to clash with
other workflow names. I'm using the namespace of the workflow content model we will create a little

Alfresco Developer: Advanced Workflows Page 26 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

later.

Now drop in the swimlanes. We need the built-in “initiator” swimlane we talked about earlier plus one
for Marketing and one for Engineering. The out-of-the-box processes show you how to use a picker to
let the initiator specify a user or a group. We're going to hardcode Alfresco groups because we know
which groups need to be assigned to the swimlanes—there's no reason to make the initiator pick in this
case.

Also, we're going to use pooled actors because the business process is that the entire team needs to get
a task with one person taking ownership of and completing that task.

Add the swimlanes to the start of the process definition.

<swimlane name="initiator" />

<swimlane name="marketing">
<assignment class="org.alfresco.repo.workflow. jbpm.AlfrescoAssignment">
<pooledactors>#{people.getGroup ('GROUP_marketing') }</pooledactors>
</assignment>
</swimlane>

<swimlane name="engineering">
<assignment class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
<pooledactors>#{people.getGroup ('GROUP_engineering') }</pooledactors>
</assignment>

</swimlane>

The swimlanes use the AlfrescoAssignment class to assign the actor. In this case we're using an
expression that leverages the Alfresco people object because we need the actor to be a reference to the
group object, not just a string containing the group name.

Add tasks to task-nodes

Our process has four task-nodes and a start-state node. Each of these need a task. It is the task that gets
assigned to a swimlane. As mentioned earlier, task names will eventually match up to names of types in
our workflow content model so they are prefixed with the namespace we're going to use for the
workflow content model. The table below shows the task-nodes, tasks, and assignments.

Node Task Name Swimlane Assignment

start scwf:submitReviewTask initiator

Alfresco Developer: Advanced Workflows Page 27 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Marketing Review scwi:marketingReview marketing
Engineering Review scwf:engineeringReview engineering
Third Party Review scwf:thirdPartyReview initiator
Revise scwiirevise initiator

The resulting jPDL for each of the nodes above looks like this:

<start-state name="start">
<task name="scwf:submitReviewTask" swimlane="initiator" />
<transition name="" to="Submit"></transition>
</start-state>

<task-node name="Marketing Review">
<task name="scwf:marketingReview" swimlane="marketing" />
<transition name="approve" to="joinl"></transition>
<transition name="reject" to="joinl"></transition>
</task-node>

<task-node name="Engineering Review">
<task name="scwf:engineeringReview" swimlane="engineering" />
<transition name="approve" to="joinl"></transition>
<transition name="reject" to="joinl"></transition>
</task-node>

<task-node name="Third Party Review">
<task name="scwf:thirdPartyReview" swimlane="initiator" />
<transition name="approve" to="Approved"></transition>
<transition name="reject" to="Revise"></transition>
</task-node>

<task-node name="Revise">
<task name="scwf:revise" swimlane="initiator"></task>
<transition name="submit" to="Submit"></transition>
<transition name="done" to="endl"></transition>
</task-node>

You may be wondering why the Third Party Review is a task-node. The Third Party Review is going to
be assigned to someone external to the system who will approve or reject the task via email. So,
technically, this should be a state node instead of a task-node. In fact, that's how I originally

Alfresco Developer: Advanced Workflows Page 28 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

implemented it, but, unfortunately, Alfresco's implementation of jJBPM timers only works for tasks in
the current release'. The bright side is that if the initiator gets tired of waiting for the third-party before
the timer runs out, they can approve the task on behalf of the third-party.

Decision logic

The process definition has two decisions. One decision figures out if all required approvals have been
obtained. If so, the process continues. If not, the initiator gets a chance to make revisions. The other
decision is used to determine if a third-party review is required based on whether or not the initiator
provided an email address.

These are pretty easy decisions to make based on process variables. For the “All Approved” decision,
we can increment a counter when the process follows an “approve” transition. If the counter is equal to
2, we know we received both approvals.

We need to be careful that we initialize the counter to 0 because it's possible that a whitepaper may go
through several review cycles. The “Submit” node gives us a convenient place to do that:

<node name="Submit">
<event type="node-enter">
<script>
<variable name="approveCount" access="read,write"/>
<expression>
approveCount = 0;
</expression>
</script>
</event>
<transition name="" to="forkl"></transition>
</node>

Now we need to increment the counter when the approve transition is taken. Let's look at the
Engineering Review as an example. We can modify the approve transition with a little script that
increments the counter:

<task-node name="Engineering Review">
<task name="scwf:engineeringReview" swimlane="engineering" />
<transition name="approve" to="joinl">
<script>
<variable name="approveCount" access="read,write"/>
<expression>
approveCount = approveCount + 1;

1 http://issues.alfresco.com/browse/AR-1879

Alfresco Developer: Advanced Workflows Page 29 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

</expression>
</script>
</transition>
<transition name="reject" to="joinl"></transition>
</task-node>

If we add the same script to the approve transition for Marketing Review as well (not shown), our
decision can conditionally transition based on the counter:

<decision name="All Approved">
<transition name="reject" to="Revise"></transition>

<transition name="" to="Third Party">
<condition>#{approveCount == 2}</condition>
</transition>
</decision>

Note that the first transition doesn't have a condition. It will be used as the default if the condition is
not met.

For the “Third Party” decision we'll do something similar. In this case we're going to check a user-
provided value. Because this property will be defined as part of the workflow content model, it
includes the “scwf” namespace, just like the task names we set earlier.

<decision name="Third Party">
<transition name="tr2" to="Approved"></transition>

<transition name="" to="Third Party Review">
<condition>#{scwf_reviewerEmail!=""}</condition>
</transition>
</decision>

We didn't need it, but if our decision was more complex, we could have used a Java class to implement
the decision logic. To do that, we would have used a “handler” tag that pointed to a Java class that
implemented the DecisionHandler interface.

<handler class="com.someco.bpm.SomeDecisionHandler" />

The handler class' decide() method would return the transition to take. For our needs, though,
expressions were enough.

The fork, join, approved, and end nodes are all fine as they are for now. If you elected not to use the
GPD, you can get them from the accompanying source if you are following along.

Workflow content model, UL, and props

Alfresco Developer: Advanced Workflows Page 30 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Now let's integrate the process with Alfresco by defining the content model and updating the client
configuration.

I recommend keeping your “normal” content models separate from your workflow models. So the first
step is updating someco-model-context.xml with a pointer to the new workflow content model file:

<bean id="extension.dictionaryBootstrap" parent="dictionaryModelBootstrap"
depends-on="dictionaryBootstrap">
<property name="models">
<list>
<value>alfresco/extension/scModel.xml</value>
<value>alfresco/extension/scWorkflowModel .xml</value>
</list>
</property>
</bean>

While you're in that file, you might as well go ahead and add the config for the workflow properties file
we're going to create shortly:

<pbean id="extension.workflowBootstrap" parent="workflowDeployer">
<property name="labels">
<list>
<value>alfresco.extension.scWorkflow</value>
</list>
</property>
</bean>

Next, create a new model file that matches the name in the context XML (scWorkflowModel.xml). I'm
going to leave out the namespace declaration and imports and just show the types and aspects. Check
the source for the full file.

<model name="scwf:workflowmodel"

xmlns="http://www.alfresco.org/model/dictionary/1.0">
<!-- namespaces and imports omitted from listing —--—>
<types>

<type name="scwf:submitReviewTask">
<parent>bpm:startTask</parent>
<mandatory-aspects>
<aspect>scwf:thirdPartyReviewable</aspect>
</mandatory-aspects>
</type>

Alfresco Developer: Advanced Workflows Page 31 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://www.alfresco.org/model/dictionary/1.0

ecmarchitect.com

<type name="scwf:marketingReview">
<parent>bpm:workflowTask</parent>
<overrides>
<property name="bpm:packageltemActionGroup">
<default>read_package_item_actions</default>
</property>
</overrides>
</type>

<type name="scwf:engineeringReview">
<parent>bpm:workflowTask</parent>
<overrides>
<property name="bpm:packageItemActionGroup">
<default>read_package_item_actions</default>
</property>
</overrides>
</type>

<type name="scwf:thirdPartyReview">
<parent>bpm:workflowTask</parent>
<overrides>
<property name="bpm:packageltemActionGroup">
<default>read_package_item_actions</default>
</property>
</overrides>
</type>

<type name="scwf:revise">
<parent>bpm:workflowTask</parent>
<overrides>
<property name="bpm:packageltemActionGroup">
<default>edit_package_item_actions</default>
</property>
</overrides>
</type>

</types>

There's one type for each task. The name of each type matches the name of the corresponding task.

You'll notice that each type inherits from a type defined in the BPM content model. If you look at the
bpmModel.xml file you'll see that the bpm:startTask has helpful properties such as the workflow
description, due date, and priority.

Alfresco Developer: Advanced Workflows Page 32 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

The bpm:workflowTask has an association called bpm:package. The bpm:package points to a
bpm:workflowPackage which is the aspect applied to a container (like a folder) that holds the
documents being routed through a workflow. When you write code that needs to access the content
being routed in a workflow you can get to it through the bpm:package association.

The “bpm:packageltemActionGroup” defines what actions are available for working with the content
in the workflow at that particular step in the process. In our case, we want the initiator to be able to
change the contents of the workflow when the workflow is started and when making revisions, but we
don't want the reviewers to be able to add or remove anything to or from the workflow.

The start task has a mandatory aspect called scwf:thirdPartyReviewable. We'll define that aspect to
contain a property we can use to store the third-party reviewer's email address:

<aspects>
<aspect name="scwf:thirdPartyReviewable">
<title>Someco Third Party Reviewable</title>
<properties>
<property name="scwf:reviewerEmail">
<type>d:text</type>
<mandatory>true</mandatory>
<multiple>false</multiple>
</property>
</properties>
</aspect>
</aspects>

Now we need to tell Alfresco how to render the properties in the workflow model. Just like extending
regular content models, we do that through the web-client-config-custom.xml file. I like to put all of
my workflow-related config entries at the bottom of this file to keep them separate.

<!-— workflow property sheets ——>

<config evaluator="node-type" condition="scwf:submitReviewTask" replace="true">
<property-sheet>
<separator name="sepl" display-label-id="general" component-
generator="HeaderSeparatorGenerator" />
<show-property name="bpm:workflowDescription" component-—
generator="TextAreaGenerator" />
</property—-sheet>
</config>

<config evaluator="node-type" condition="scwf:marketingReview" replace="true">

Alfresco Developer: Advanced Workflows Page 33 of 49

This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

<property-sheet>
<separator name="sepl" display-label-id="general" component-—
generator="HeaderSeparatorGenerator" />
<show-property name="bpm:description" component-
generator="TextAreaGenerator" read-only="true"/>
<show-property name="bpm:comment" component-generator="TextAreaGenerator"
/>
</property-sheet>
</config>

<config evaluator="node-type" condition="scwf:engineeringReview" replace="true">
<property-sheet>
<separator name="sepl" display-label-id="general" component-—
generator="HeaderSeparatorGenerator" />
<show-property name="bpm:description" component-—
generator="TextAreaGenerator" read-only="true"/>
<show-property name="bpm:comment" component—-generator="TextAreaGenerator"
/>
</property-sheet>
</config>

<config evaluator="node-type" condition="scwf:revise" replace="true">
<property—-sheet>
<separator name="sepl" display-label-id="general" component-—
generator="HeaderSeparatorGenerator" />
<show-property name="bpm:description" component-
generator="TextAreaGenerator" read-only="false"/>
<show-property name="bpm:comment" component—-generator="TextAreaGenerator"

/>
</property-sheet>
</config>
<!-— add third-party reviewable related aspect properties to property sheet —--—>

<config evaluator="aspect-name" condition="scwf:thirdPartyReviewable">
<property-sheet>
<show-property name="scwf:reviewerEmail" display-label-id="email" />
</property-sheet>
</config>

You can see that although the BPM model defines several properties, I'm only choosing to expose the
workflow description and comment properties for this particular process. The description is editable
only when submitting the workflow or doing a revision and is read-only everywhere else.

The last step is to externalize the strings in our model and our process. Remember that earlier we

Alfresco Developer: Advanced Workflows Page 34 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

registered a resource bundle called scWorkflow. Create a file called scWorkflow.properties and add the
strings. The first set of strings to add have to do with the model:

scWorkflowModel related strings

scwf_workflowmodel.type.scwf_ submitReviewTask.title=Start SC Web Review
scwf_workflowmodel.type.scwf_submitReviewTask.description=Submit SC Web documents
for review & approval to a group of people
scwf_workflowmodel.type.scwf_marketingReview.title=Marketing Review
scwf_workflowmodel.type.scwf_marketingReview.description=Review documents for
impact on SomeCo marketing message
scwf_workflowmodel.type.scwf_engineeringReview.title=Engineering Review
scwf_workflowmodel.type.scwf_engineeringReview.description=Review documents for
technical accuracy and best practices
scwf_workflowmodel.type.scwf_thirdPartyReview.title=Third-Party Review
scwf_workflowmodel.type.scwf_thirdPartyReview.description=Third-party reviews
documents as necessary

scwf_workflowmodel .property.scwf_reviewerEmail.title=Reviewer email
scwf_workflowmodel.property.scwf_reviewerEmail.description=Third-party reviewer
email address

The first part of each key matches the name of the workflow content model. There's a title and a

description entry for each type and property in our workflow model.

Next, to the same file, we add the process-related strings:

processdefinition related strings
scwf_publishwhitepaper.workflow.title=Publish Whitepaper to SC Web
scwf_publishwhitepaper.workflow.description=Review and approve SC Whitepaper
content

scwf_publishwhitepaper.node.Marketing\ Review.transition.approve.title=Approve
scwf_publishwhitepaper.node.Marketing\
Review.transition.approve.description=Approve this change

scwf_publishwhitepaper.node.Marketing\ Review.transition.reject.title=Reject
scwf_publishwhitepaper.node.Marketing\ Review.transition.reject.description=Reject
this change

This file is fairly redundant so it's truncated here. Note that the first part of the property key matches
the name we gave our process definition. The values for the workflow.title and workflow.description
keys will be what the user sees when she clicks “Start Advanced Workflow” in the Alfresco web client.

The remaining titles and descriptions are the strings shown when someone manages a task.

Deploy and test

Alfresco Developer: Advanced Workflows Page 35 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

While we're still tweaking the workflow, it's handy to use the GPD deployment tool because we can
change the process definition without a restart. The exception is when the model changes. So for this
first test, we have to restart Alfresco to pick up the new model, then we can deploy using GPD.

If you haven't done so already, create a group called “engineering” and one called “marketing”. Create
a couple of test users for each group.

Deploy the customizations and restart Alfresco (See “How to deploy” near the end of this article if you
need help). If everything starts cleanly, use the Deployment tab on the GPD to deploy the process
definition. You don't need to do anything other than make sure the Deployment Server Settings are
correct (Server Deployer should be “/alfresco/jbpm/deployprocess™).

Tip: Change the default jBPM Server Deployer URL in the Eclipse preferences to avoid having to re-
set the Server Deployer URL value every time you want to deploy the process.

Create a piece of test content. Make sure you've configured permissions such that the marketing and
engineering groups have Editor access or higher'. Then, click Start Advanced Workflow.

1 We haven't set it up yet, but the last step in the process is going to be to run an action that adds an aspect and sets a
property. There appears to be a bug (Jira TBD) in which Alfresco JavaScript executes using the credentials of the last
assigned task node. If the workflow path does not go to the Third-Party Review and instead goes directly to Approved
from the join, the credentials of either the Engineering or Marketing user will be used to add the aspect. Thus, those
groups need Editor access or higher.

Alfresco Developer: Advanced Workflows Page 36 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

My Alfresco = Someco = Whitepapers

Whitepapers

& HAdd — NP e

) This view allows you to browse the items in this E (o) C?Qntent Create(y) More Actions(») lcon Wiew ()
space.

¥ Browse Spaces ltems Fer Page IB

Mo iterns to display Click the 'Create Space' action to create a space.

Page 1 of 1 1

¥ Content ltems ltems Per Page IB

.- sample-a.pdf '

o 114.5 KB

16 Novermnber 2007 13:59
ke T-11EO,
Preview in Template
‘{i Update

4 cut

[} Copy

‘r A]freg: G Start Discussion pported. Alfresco Software Inc. ® 2005-2007 Al rights reserved.

% Start Advanced Workflow

Page 1 of 1 1

You should see the newly-deployed workflow in the list of available workflows.

My Alfresco = Someco = Whitepapers

{§} Start Advanced Workflow Wizard

@ This wizard helps you start an advanced workflow for an item in the repository

Steps Choose Workflow

Mext |
1. Choose Workflow Choose the workflow you want to start

2. Workflow Options

3. Summary Ayvailable workflows:

e Group Review & Approve (Group review & approval of content] CLCEII
« Review & Approve (Review & approval of content)

3 publish Whitepaper to SC Web (Review and approve SC Whitepaper content)
" adhoc Task (Assign task to colleague)

To continue click Next.

Alfresco Developer: Advanced Workflows Page 37 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Provide a description. To test the third-party review path, specify an email address. Because we haven't
set up the notification yet you don't have to worry about it trying to send an email. Click Finish to
launch the workflow.

Log in as one of your test users. Because we're using pooled tasks, you'll need to add a dashlet to your
“My Alfresco” dashboard. After configuring the dashboard to include the “My Pooled Tasks” dashlet,
you should then see the task.

My Alfresco
3
My Alfresco Dashboard 53 Configure
Configure this wview and build your personal Alfresco dashboard
My Pooled Tasks
Description & Type @ Id ® Created v Due Date @ Status @ Priority @ Actions
@ New whitepaper! Marketing Review 271 16 November 2007 19:10 Mot Yet Started 3 (ﬁ

Page 1 of 1 1

My Tasks To Do

Mo tasks found.

Either take ownership of the task so that you can see how the task moves to your To Do list and gets
removed out of the other users' inboxes (if the users are members of the same group) or simply
Approve the task.

In the real world, you'd run several tests—you have to make sure you test every possible path through
the workflow.

Using the workflow console

If something goes wrong or you just want to get up close and personal with the execution of the
process, you'll need to use the workflow console. Unfortunately, there's not a link in the UI for it just

yet, but the URL is http://localhost:8080/alfresco/faces/jsp/admin/workflow-console.jsp. The table
below shows some common commands and what they do.

Command What it does

show workflows all Shows all running workflows.

use workflow <workflow id>

Makes all subsequent commands happen in the

Alfresco Developer: Advanced Workflows Page 38 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://localhost:8080/alfresco/faces/jsp/admin/workflow-console.jsp

ecmarchitect.com

where <workflow id> is something like jbpm$71

context of the specified workflow.

show transitions

Shows all leaving transitions.

signal <path id> <transition>

where <path id> is something like jbpm$71-@
and transition is the name of the leaving transition
you want to take. Leave off the transition to take
the default.

Signals the token. Good when your workflow is
stuck on a node or when you want to take a
transition without fooling with the task
management UL

desc path <path id>

where <path id> is something like jbpm$71-@

Dumps the current context. Great for debugging
process variables.

end workflow <workflow id>

Cancels the specified workflow.

show definitions all

Shows the current deployed workflow

undeploy definition <workflow id> Or

undeploy definition name <workflow name>

Undeploys the specified workflow and stops any
workflows running with that definition. The
<workflow id> variant undeploys a specific
version of a workflow.

These are a subset of the commands available. Type “help” and click Submit to see the full list of

commands.

Other debug aids include using “logger.log” statements in Alfresco JavaScript actions (with

log4j.logger.org.alfresco.repo.jscript set to DEBUG) and using System.out statements in non-Alfresco

script blocks. When you start writing Java action classes and decision handlers you may find it handy

to hook up the Eclipse remote debugger as well.

If all goes well, your workflow should complete successfully. After each test run you should see no

active workflows when you do a “show workflows all” on the workflow console.

Step 2: Implement web scripts and actions

Now that the base process is running and it's hooked in to the Alfresco Ul, it's time to pimp it out with

Alike 2.5 License

Alfresco Developer: Advanced Workflows

Page 39 of 49

This work is licensed under the Creative Commons Attribution-Share

ecmarchitect.com

some business logic.
Call the set-web-action in the Approved node

Let's work on the Approved node first because it's easy. When a whitepaper is approved we want to
add the “sc:webable” aspect to it and set the “isActive” and “published” properties. You may recall
from the web script article that these get used by the front-end to determine if the whitepaper should be
shown on the web site. I happen to have a rule action lying around that adds the aspect and sets the
properties’, so all we have to do is tell our process to execute it via Alfresco JavaScript. Update the
Approved node as follows:

<node name="Approved">

<transition name="" to="endl">
<action class="org.alfresco.repo.workflow. jbpm.AlfrescoJavaScript">
<script>

<variable name="bpm_package" access="read" />
<expression>
var setWebFlagAction = actions.create ("set-web-flag");
setWebFlagAction.parameters|["active"] = true;
for (var 1 = 0; 1 < bpm package.children.length; i++) {
setWebFlagAction.execute (bpm_package.children[i]);
}
</expression>
</script>
</action>
</transition>
</node>

This is a straightforward piece of Alfresco JavaScript that executes the custom action called “set-web-
flag” for every piece of content in the workflow package. The action adds the aspect and sets the
properties appropriately.

Notice I've placed the action on the transition instead of as a child of the Approved node itself. It's
syntactically correct to move the action outside of the transition (it then behaves like a node-enter
event), but [found that the action was getting executed and then not signaling the node. With the action
on the transition, the node immediately takes the default transition and performs the action as part of

1 T've covered actions in another paper. Unfortunately, it was before the “SomeCo” example was born so it doesn't flow
well with the rest of the Alfresco Developer articles. I'll fix that someday. If you want to see how the action is defined,
take a look in the source at someco-actions-context.xml, somecoactions.properties, and
com.someco.action.executer.SetWebFlag.java

Alfresco Developer: Advanced Workflows Page 40 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

that step which is exactly what I needed it to do.

Potential Gotcha! Notice that I'm declaring the bpm_package variable prior to accessing it in my
expression. This isn't always required, but I haven't been able to reliably predict when it is and when it
isn't. This exact same code worked without a variable declaration in prior versions of Alfresco, but as
of 2.1, the variable tag declaring bpm_package seems to be required. With 2.1, Alfresco upgraded to
version 3.2 of jBPM so that may be the cause of the change in behavior. Regardless, it's probably
always best to make the declaration.

That's all we need to do for the Approved node. Now let's work on the Third Party Review.
Implement the external third-party review

Someday there will be an out-of-the-box mechanism for exposing business processes to external
parties. Until then, we can roll our own using the out-of-the-box mail action and web scripts. There are
two pieces required to make this work. The first part is that when the token arrives in the Third Party
Review node, we want to send an email to the third party with “approve” and “reject” links. The
recipient will open their email and click on either the approve link or the reject link. The second part is
that those links will invoke an Alfresco web script that signals the appropriate node.

This may seem backwards, but let's build the web script that handles the links first, then build the
assignment class that sends the email notification.

We've covered the Web Script framework in a previous article (See “More Information™) so let's just
look at the Java class that acts as the web script controller. Here's the executeImpl() method:

protected Map<String, Object> executeImpl (WebScriptRequest req, WebScriptStatus
status) {

String id = reg.getParameter ("id");
String action = reqg.getParameter ("action");
if (id == null || action == null) {

status. jsSet_code (400) ;
status. jsSet_message ("Required data has not been provided");
status. jsSet_redirect (true);

}

workflowService.signal (id, action);

Map<String, Object> model = new HashMap<String, Object>();

Alfresco Developer: Advanced Workflows Page 41 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

model .put ("response", “Success”);

return model;
}

The class grabs the workflow ID and the action to take (which is really just a transition name) and then
uses the workflow service to signal the node. So, for example, if someone were to post this URL:

http://localhost:8080/alfresco/service/someco/bpm/review 2id=ibpm$89- @ &action=approve

the Java class would signal the node identified by jbpm$89-@ with the “approve” transition'.

The second piece to the Third Party Review is sending the email to the third-party. There is an out-of-
the-box mail action, and you've already seen how to call an action from a workflow using Alfresco
JavaScript, but we've got a few things to take care of other than simply sending an email, so let's write
a custom action class.

Create a new class called com.someco.bpm.ExternalReviewNotification that extends
JBPMSpringActionHandler. We need to build an email that has two links—one for approve and one
for reject—that represent the two possible transitions out of the Third Party Review node.

The URL for the BPM web script we just implemented contains the path ID that needs to get signaled.
The path ID is an Alfresco concept that I equate to jJBPM's “token”. It is a string created by
concatenating the workflow engine identifier (“jbpm”) with the JBPM process instance ID which we
can get from the jJBPM APIL.

With that information, we can implement the execute() method of the ExternalReviewNotification
action class as follows:

public void execute (ExecutionContext executionContext) throws Exception {

String recipient = (String) executionContext.getVariable (
ExternalReviewNotification.RECIP_PROCESS _VARIABLE) ;

StringBuffer sb = new StringBuffer();

sb.append ("You have been assigned to a task named ");

sb.append (executionContext.getToken () .getNode () .getName ()) ;

sb.append (". Take the appropriate action by clicking one of the links
below:\r\n\r\n") ;

1 The web script configuration that maps the URL to the controller and view resides in
alfresco/extension/templates/webscripts/com/someco/bpm. The controller class is com.someco.scripts.GetReview.

Alfresco Developer: Advanced Workflows Page 42 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://localhost:8080/alfresco/service/someco/bpm/review?id=jbpm$89-@&action=approve

ecmarchitect.com

List transitionList = executionContext.getNode () .getLeavingTransitions();
for (Iterator it = transitionlList.iterator(); it.hasNext();) {
Transition transition = (Transition)it.next ();
sb.append (transition.getName ()) ;

sb.append ("\r\n") ;
sb.append ("http://localhost:8080/alfresco/service/someco/bpm/review?id=jbpm

¥
sb.append (e xecutlonContext getProcessInstance () .getId());
sb.append ("-@Q") ;
sb.append('&actlon—")'
sb.append (transition.getName ()) ;
(

sb.append ("\rx\n\r\n")

Action mailAction = this.actionService.createAction (MailActionExecuter.NAME) ;
mailAction.setParameterValue (
MailActionExecuter.PARAM SUBJECT,
ExternalReviewNotification.SUBJECT) ;
mailAction.setParameterValue (MailActionExecuter.PARAM TO, recipient);
mailAction.setParameterValue (
MailActionExecuter.PARAM FROM,
ExternalReviewNotification.FROM ADDRESS) ;
mailAction.setParameterValue (MailActionExecuter.PARAM TEXT, sb.toString());

this.actionService.executeAction (mailAction, null);

return;

}

The first thing the method does is grab the recipient from a process variable. I used a different process
variable than the one in our “scwf” namespace because I didn't want to couple this action class with a
specific workflow model.

Next, I start building the message body with a string buffer. The
executionContext.getToken().getNode().getName()Caﬂgyabsthenodelunne(“TthlPaﬂy
Review”).

Rather than hardcode “approve” and “reject”, I iterate over the leaving transitions to spit out their
names followed by the appropriate web script URL. That way, if the process ever changes, there's a
chance the action class won't need to be touched.

The last major block of code uses the action service to execute the Alfresco mail action. Sure, you

Alfresco Developer: Advanced Workflows Page 43 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

could use the Java mail API to do it yourself, but why not leverage the mail action? That way you can
leverage the same SMTP configuration settings as Alfresco.

The last thing we have to do is call the new action class from the process. We'll use the “node-enter”
event to trigger the action. Update the Third Party Review node as follows:

<task-node name="Third Party Review">
<event type="node-enter">
<script>
<variable name="notificationRecipient" access="read,write" />
<variable name="scwf_reviewerEmail" access="read" />
<expression>

notificationRecipient = scwf_reviewerEmail;
</expression>
</script>
<action class="com.someco.bpm.ExternalReviewNotification"/>
</event>

In the first part of the event, I'm reading the reviewer's email address from the property populated by
the workflow initiator into a variable named as the action class expects. Then, I call the action.

Deploy and test

We've added a new rule action, a web script, and a JBPM action class. It's time to deploy and test. If
you want to try out the notification piece, you'll need access to an SMTP server. For developing and
testing locally, Apache James works great. If the SMTP server you use is running somewhere other
than localhost, you'll have to tell Alfresco about it via the mail.host setting in custom-
repository.properties.

If all goes well, you should get an email that looks like this:

Alfresco Developer: Advanced Workflows Page 44 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

From: alfresco@localhost

To: jpotts@localhost

Subject: Workflow task requires action
Date: Fri, 16 Nov 2007 13:23:08 -0500 (GMT-06:00)

You have been assigned to a task named Third Party Review. Take the appropriate action by
clicking one of the links below:

approve
http://localhost:8080/alfresco/service/someco/bpm/review?id=1bpm$86- @Raction=approve

reject
http://localhost:8080/alfresco/service/someco/bpm/review?1d=1bpm$86- @kaction=reject

If you click on a link, it should signal the task-node. You should see the workflow continue on the

appropriate path.

Warning: The Third Party example is not production-ready

I included the third-party example to show one type of wait-state/asynchronous behavior in a process.

It's got a long way to go before it can be used in production. A short list list of obvious issues includes:

The email recipient doesn't get a copy of the documents being reviewed. One way to address
this would be to have the notification action send a zip of the documents in the workflow
package. Another way would be to write additional web scripts or send them a download link. I
simply didn't have time to implement this and figured it was a bit off-topic anyway.

The person clicking the email link doesn't need to authenticate because it uses the session
already established by the web browser when you logged in as one of your test users to
complete the review step. (A horrible hack, I know. See previous “Time” excuse.) In real life,
the Java controller would have to create its own session as admin or some other user in order to
signal the node. There's an example of how to do this in the “Intro to Web Scripts™ article.

It'd be really easy for an unauthorized person to signal any node in the system because my
controller class doesn't do any validation whatsoever and the path ID's are sequential. In real
life, you'd want to check that (1) the person making the request is the person assigned to the
task, (2) that the task is still active, and (3) possibly use an additional security mechanism like a
shared secret of some kind.

Alfresco Developer: Advanced Workflows Page 45 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

« The email body should probably come from a Freemarker template. That way you could reuse
the notification class in any number of processes and it simplifies email body maintenance.

So, long story short, feel free to use this idea, but realize that I've cut corners for brevity's sake.

Step 3: Add a timer to the third-party task

What if you sent an email to the third party and they never took action? One way to handle that
problem is with a timer. Although jJBPM has been a part of Alfresco since release 1.4, timers didn't
start working until 2.1—they had to be there for the pre-publish functionality in WCM.

Timers get set on a node either using the “create-timer” tag or via the “timer” tag. When a timer
expires, the process can take a transition, execute a script, or call an action. In our case, we just want to
take the “approve” transition when the timer expires and write a message to the log. Update the
scwf:thirdPartyReview task in the Third Party Review node as follows:

<task name="scwf:thirdPartyReview" swimlane="initiator" >
<timer name="thirdPartyTimer" duedate="10 minutes" transition="approve">
<action class="org.alfresco.repo.workflow. jbpm.AlfrescoJdavaScript">
<script>
logger.log ("Third-party timer expired...approving");
</script>
</action>
</timer>
</task>

I've got the timer set for 10 minutes but you could obviously set it for as long or as short as you wish.
You can also add a “business” modifier if you want to use business days instead of calendar days, for
example. Setting an absolute date works as well. The due date could also be the result of an expression.
Take a look at the out-of-the-box WCM workflow for an example.

Deploy and test

Adding a timer doesn't require a restart. Just redeploy the process using the GPD then start a new
workflow. When the timer expires, the process should continue as if someone signaled the “approve”
transition.

Alfresco Developer: Advanced Workflows Page 46 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Step 4: Configure the workflows for deployment

The final step in the example is to configure the workflow for automatic deployment on Alfresco
startup. Open the someco-model-context file. The bean that we used to register the workflow labels can
be used to deploy workflows. Update it with the following:

<property name="workflowDefinitions">
<list>
<props>
<prop key="engineId">jbpm</prop>
<prop key="location">alfresco/extension/workflows/publish-
whitepaper/processdefinition.xml</prop>
<prop key="mimetype">text/xml</prop>
<prop key="redeploy">true</prop>
</props>
</list>
</property>

The details on the prop elements have already been discussed. The key is that the “location” matches
the path to the process definition file.

Conclusion

You should now know the ins and outs of implementing advanced workflows using the jJBPM engine
embedded within Alfresco. You know when Alfresco's basic workflows will suffice and when
advanced workflows are more appropriate. We talked about process definitions being a collection of
nodes connected by transitions. Although you didn't see an example of this, you know that you could
create a custom node type if you had to. And, you now know how to add business logic to workflows
using expressions, Alfresco JavaScript and Java.

We also looked the overall process around implementing advanced workflows. Then we dived into the
details by walking through an example that used many of the different node types and business logic
options. We even spiced things up a bit by exposing the business process to a third-party via SMTP and
HTTP with the help of the web script framework.

Hopefully, this has sparked some ideas about how you can leverage Alfresco and JBoss jBPM in your
own projects and has given you some concrete examples you can leverage in your own projects going
forward.

Alfresco Developer: Advanced Workflows Page 47 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

ecmarchitect.com

Deploying and testing

To deploy the sample code included with this article, all you have to do is:

1. Import the advanced-worklfow-article-project.zip file into Eclipse. (Or just expand it on your
file system).

2. Change build.properties to match your environment.
3. Run the default Ant task.

The default Ant task will compile all necessary code, JAR it up, zip up the JAR and the extensions into
the appropriate folder structure, and then unzip on top of the Alfresco web root which deploys the
custom model, Spring config files, web client customizations, scripts, web scripts, and all other assets
to the appropriate directories.

In case you are curious, my environment is:
e Ubuntu Gutsy Gibbon
e MySQL 5 (with version 5.1.5 of the JDBC driver)
e Javal5.0_13
e Tomcat 5.5.17
e Alfresco 2.1.1 Enterprise, WAR-only distribution
e JBoss jJBPM Graphical Process Designer Plug-in 3.0.12
e Apache James 2.3.1 (for testing third-party notification via SMTP)

Obviously, other operating systems, databases, and application servers will work as well. Web Scripts
and jBPM timers, however, only became available starting with Alfresco 2.1.

Where to find more information

The complete source code that accompanies this article is available here from
ecmarchitect.com.

You may also enjoy previous articles in the Alfresco Developer series at ecmarchitect.com:
"Intro to the Web Script Framework", October, 2007.

Alfresco Developer: Advanced Workflows Page 48 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://ecmarchitect.com/archives/2007/10/25/777
http://ecmarchitect.com/images/articles/alfresco-workflow/advanced-workflow-article-project.zip
http://ecmarchitect.com/

ecmarchitect.com

+ “Implementing custom behaviors”, September, 2007.
- “Working with Custom Content Types”, June, 2007.
« “Developing custom actions”, January, 2007.

« Alfresco wiki pages related to this topic:
« Workflow Administration wiki page
- Alfresco JavaScript API wiki page

- For deployment help, see the Client Configuration Guide and Packaging and Deploying
Extensions in the Alfresco wiki.

- For general development help, see the Developer Guide.

- For help customizing the data dictionary, see the Data Dictionary wiki page.
- JBoss jBPM
« The JBoss JBPM Starter Kit has a standalone jBPM instance, examples, and

documentation. If you're doing anything serious with advanced workflows, you should
check it out.
- The JBoss Graphical Process Designer is an Eclipse plug-in that can be used to create

process definitions graphically and to deploy processes to the jJBPM instance in
Alfresco.
« “The State of Workflow” is a technical article by Tom Baeyens, the founder and lead of

the JBoss jBPM project, about BPM, workflow, and technical considerations that went
into the creation of jBPM.

About the author

Jeff Potts is the Enterprise Content Management Practice Lead at Optaros, a
'] leading Open Source and Next Generation Internet consultancy. Jeff has fifteen
.« « N years of experience implementing content management, collaboration, and other

knowledge management technologies for a variety of Fortune 500 companies. Jeff
lives in Dallas, Texas with his wife and two kids. Read more at ecmarchitect.com.

Alfresco Developer: Advanced Workflows Page 49 of 49
This work is licensed under the Creative Commons Attribution-Share
Alike 2.5 License

http://processdevelopments.blogspot.com/
http://www.jboss.com/products/jbpm/stateofworkflow
http://labs.jboss.com/downloading/?projectId=jbossjbpm&url=http://sourceforge.net/project/downloading.php?groupname=jbpm&filename=jbpm-jpdl-designer-3.1.0.sp1.zip
http://labs.jboss.com/downloading/?projectId=jbossjbpm&url=http://downloads.sourceforge.net/jbpm/jbpm-starters-kit-3.1.4.zip
http://wiki.alfresco.com/wiki/WorkflowAdministration
http://www.ecmarchitect.com/
http://www.optaros.com/
http://wiki.alfresco.com/wiki/Data_Dictionary_Guide
http://wiki.alfresco.com/wiki/Developer_Guide
http://wiki.alfresco.com/wiki/Packaging_And_Deploying_Extensions
http://wiki.alfresco.com/wiki/Packaging_And_Deploying_Extensions
http://wiki.alfresco.com/wiki/Web_Client_Configuration_Guide
http://wiki.alfresco.com/wiki/JavaScript_API
http://wiki.alfresco.com/wiki/Web_Scripts
http://ecmarchitect.com/archives/2007/01/10/732
http://ecmarchitect.com/images/articles/alfresco-content/content-article.pdf
http://ecmarchitect.com/archives/2007/09/26/770

	Introduction
	What is a workflow?
	Workflow options
	Alfresco workflow

	jBPM concepts
	Deploying processes
	Wiring a process to the Alfresco UI
	Define a workflow-specific content model
	Update web-client-config-custom.xml
	Externalize the strings

	Implementation summary
	SomeCo Whitepaper submission example
	Business process description
	High-level steps
	Step 1: Implement the basic flow and workflow user interface
	Step 2: Implement web scripts and actions
	Step 3: Add a timer to the third-party task
	Step 4: Configure the workflows for deployment

	Conclusion
	Deploying and testing
	Where to find more information
	About the author

