Category: Content Management

Enterprise Content Management (ECM), Web Content Management (WCM), Document Management (DM). Whatever you call it this category covers market happenings and lessons learned.

Now available: Alfresco Fivestar Ratings add-on for Alfresco Share

A couple of weeks ago I posted a survey asking if anyone saw any value in a five star ratings widget for Alfresco Share. Honestly, it would have only taken one or two positive responses–even if no one needed one, there’s value in it for example’s sake. It turns out about 20 readers of this blog voted positively, so I went ahead and knocked it out.

This Alfresco Share customization makes it possible for any document in the repository to become “rateable”. When a document is rateable, the Alfresco Share user interface will show a clickable five star ratings widget. The stars light up to indicate the average rating for that document. Users simply click one of the stars to post their own rating. When clicked, the widget refreshes itself with the updated average.

Here is a short screencast that demonstrates the customization. You’ll want to make it full screen.

To implement this, I took the Someco Ratings Service from the Alfresco Developer Guide, moved it to the Metaversant namespace, and changed the names of my Spring beans and JavaScript root variable. Even though my initial target Alfresco version is 3.3, I didn’t want the code to conflict with Alfresco’s new back-end-only ratings service in 3.4 which uses some of the same names that were in the book. I also changed the JSON that the ratings web scripts use to be closer to what exists in 3.4. That way, when I do make a version that works with 3.4, it could potentially work with either my ratings back-end or Alfresco’s.

I then went to work on the UI side, integrating the widget into Share’s document details page, document library (both Share and repository views), search results page, and document-related dashlets. To go from what was in the book to a working integration I revamped the client-side ratings JavaScript from a set of functions to an actual object. Then, I started injecting my own methods into Alfresco’s client-side object prototypes to drop my widget in where appropriate.

Alfresco is still working to make customizations like this more modular and easier to plug in alongside their code and code from the community. Until then, be aware that if your Alfresco implementation already has customizations that override some of the same web scripts and client-side components this module does, there may be some manual integration needed. If you have an out-of-the-box installation (or a set of customizations that won’t conflict with this one) you can deploy the AMP to the Alfresco WAR and the Share customizations to the Share WAR and you’ll be set.

The Alfresco Fivestar Ratings project lives at Google Code. Feel free to check out the source, try it out, and use it on your projects. If you find a bug, log it, then fix it!

Thoughts on Alfresco’s Recognized Developer Accreditation Test

Alfresco is rolling out a new accreditation program. A certain subset of partners (I’m not sure what the criteria is–ask your rep) can take an online test that validates whether or not you know a thing or two about Alfresco. If you pass, you’re a “Recognized Alfresco Developer”, which ostensibly comes with a secret handshake and a map to the club house.

When I first heard about the program I was a little skeptical. Don’t get me wrong–anything that my company and I can use to help differentiate ourselves from more, um, what’s the word I’m looking for–casual? less-experienced? opportunistic?–partners is a good thing. And, as we continue to grow, I can use accreditation as a potential data point when making hiring decisions. My concern was that the test would lack both depth and breadth and we’d end up where we are now: A bunch of partners of varying capability lumped into the same “Gold” category (or “Platinum” if you fork over the big dough).

After taking the test (and passing–c’mon, was there any doubt?) I feel better about it. The test actually appeared to do a decent job of covering many different aspects of the product including configuration and developer issues we see on real world implementations, so it’s not an easy test. Kudos to Carlos Miguens and the Alfresco Training team–I know it must have been a big project to get the accreditation program pulled together and construct a test that, at least to me, feels like the right level of detail and difficulty.

I do think the test could be improved. I think there was way, way too much emphasis on the WCM product. The value of the 30 or so questions asked on WCM out of the 100 or so total asked is that it really does take someone who’s been around the product a while to get those right. I just think the test is over-weighted toward WCM compared to the proportion of actual “project share” the WCM product gets in real life versus the core repository.

I think there were also too many questions on the Explorer client. Again, maybe the goal is to be slightly biased towards those partners who have been working with Alfresco long enough to have done an Explorer customization or even simply to know certain details about the Explorer UI. But most clients are now using and customizing Share as their primary interface versus Explorer. On the other hand, I think it is a bit early for “Share customization” to be an accreditation test topic, so let’s not get ahead of ourselves!

I also think it would be helpful feedback to give the test taker an idea of what was missed. It doesn’t have to be the exact question (although there were several answers I’d love to vigorously defend if I did indeed miss them) but other similar tests I’ve taken in the past have offered up the “weak” areas so the student could shore those up. Thanks for the passing grade and everything, but, not giving any hint as to what I missed is like starting a great joke with a huge build-up and then dropping dead before you can tell me the punch line.

What I don’t know is how well formal training prepares you for the test. I would hope that, in the aggregate, real world implementers score as good or better than groups of test takers who are fresh out of Alfresco training but lack on-the-ground experience. Really, it has to be that way for accreditation to be meaningful. I haven’t taken any of Alfresco’s training, so I’m curious to hear feedback on the test from those that have.

If you haven’t taken your test yet, good luck! I wish I could tell you what to study that will help you do well, but, honestly, I can’t think of any one reference that’s going to do the trick. And, really, I guess that’s a good thing.

Apache Chemistry cmislib 0.4 incubating now available

Apache Chemistry LogoThe Apache Chemistry development team is pleased to announce that the 0.4 incubating release of cmislib, the Python client API for CMIS, is now available for download. You may have to use one of the backup servers until the mirrors fully update. Alternatively, you can use easy_install to install cmislib by typing “easy_install cmislib”.

This release has various fixes and enhancements that the community has contributed since cmislib joined the Apache Chemistry project with its 0.3 release. If you are using Alfresco, you might be interested in an enhancement in cmislib 0.4 that makes it possible to use ticket-based authentication instead of basic auth.

For those who haven’t used it, cmislib makes it easy to work with CMIS-compliant repositories from Python.

Any interest in a pre-3.4 five star ratings widget for Alfresco Share?

One of the examples I put in the Alfresco Developer Guide is a five star ratings widget. The example company in the book, SomeCo, uses it to let their web site users rate whitepapers published on the site. Metaversant recently took that code and implemented it in a production web site, and that client gave us permission to take the code (which wasn’t really changed that much from the book anyway) and release it as open source.

But in Alfresco 3.4 Community and Enterprise, Alfresco has implemented partial ratings functionality. Right now, it consists of the back-end, repository tier services and it is darn close to what’s in the book.

With the back end in place, I expect Alfresco to release ratings functionality in the Share front-end in an upcoming release. So, I’m somewhat reluctant to package up my ratings stuff and release it as it is partially obsolete in 3.4 anyway. On the other hand, it would give those of you on releases earlier than 3.4 a functional ratings widget, and, with some adjustments, I could make the front-end work with Alfresco’s rating service in 3.4, which would mean functional ratings in Share for those of you that have already upgraded.

If the code was ready to go, I’d just package it up and if only one person used it, great. But, the client we did the widget for was using a heavily customized version of Share–we didn’t integrate the widget into the out-of-the-box document library or document details page. That’s the last bit of work that needs to be done. Even if there is no interest, I might do it anyway just to have as an example. But, I’d be even more motivated if there were folks out there who would use it in their production implementations.

So what do you say? Any interest? Take the survey below and let me know.

Create your free online surveys with SurveyMonkey, the world’s leading questionnaire tool.

Alfresco Developer Guide source updated, uploaded to Google Code

Back in July of 2009, I did a reorg of the source code that accompanies the Alfresco Developer Guide. Shortly after that I validated against 3.2 Enterprise, but I didn’t keep up with the Alfresco releases after that. I’m happy to say that I’ve caught up. And, to make it easier for you to get to the source code, I’ve checked it all in to a Google Code project.

So, if you’re reading the book and you’re finding a couple of problems with the source code on Alfresco versions after 3.2 Enterprise, go get a version that matches up with the chapter you are on and the release of Alfresco you are running, and see if it fixes the problem.

I’ve now validated that the code works with the following versions:

  • Alfresco 2.2.4 Enterprise
  • Alfresco 3d Labs
  • Alfresco 3.0.1 Enterprise
  • Alfresco 3.1.1 Enterprise
  • Alfresco 3.2 Community
  • Alfresco 3.2 Enterprise
  • Alfresco 3.3 Community
  • Alfresco 3.3 Enterprise
  • Alfresco 3.4c Community
  • Alfresco 3.4 Enterprise

Deconstructing DeckShare: A brief look at Alfresco Web Quick Start

Last Fall, just before the Developer Conference in New York City, Alfresco approached Metaversant with a small project–they needed a web site to share presentations from the DevCon sessions and other events. There are several generic slide-sharing sites out there–Alfresco and I have both used SlideShare for that sort of thing pretty extensively. But Alfresco was looking for something they could have complete control over, plus they were looking to exercise their new Web Quick Start offering. So I rounded up a sucker–I mean a collaborator–named Michael McCarthy from over at Tribloom, and we knocked it out.

Although it makes good marketing sense for Alfresco to use its own offering for the site, I do think the “private presentation-sharing” use case is also generally applicable to many other businesses out there. Technology companies, of course, but also any company with a large sales force or even more modest extranet needs could benefit from a solution like this. SlideShare is great when what you want to share is public. When presentations need to be securely shared, many companies use expansive portals to share sales collateral, marketing presentations, or company communications, but those often come with a very low signal-to-noise ratio. The solution we built–we call it “DeckShare”–is laser-focused on one thing: Making it easy for content consumers to find the presentations they need, quickly.

DeckShare is built on top of Alfresco’s new Web Content Management (WCM) offering called Web Quick Start. Honestly, Web Quick Start, as the name implies, provides a good starting point for building a dynamic web site on top of Alfresco, and the sample site was so close to what a basic slide-sharing site needed, we didn’t have to do a whole lot of work. Even so, if you want to do slide-sharing on top of Alfresco, you can save even more time by starting with DeckShare.

I thought it might be cool to walk you through how we got from the Web Quick Start sample app to DeckShare as a way of getting you familiar with Web Quick Start and to help you understand how DeckShare works in case you want to use it on your project.

Some of this write-up is also included in the “About” page within the DeckShare site. Alfresco is currently branding DeckShare to meet their needs so I have no idea if the About page will still be there when the site goes live, so I may or may not be repeating myself somewhat.

What is DeckShare?

Alfresco’s DeckShare implementation isn’t live yet, so let me give you the nickel tour. DeckShare is a solution for quickly creating a self-hosted presentation-sharing site on top of Alfresco without having to write any code. DeckShare lets non-technical users manage and categorize presentations that are then consumed by end-users. End-users can find presentations by browsing one or more hierarchies (“Topics”, “Events”, “Audience”, for example), performing a full-text search, or by browsing the list of the latest and “featured” presentations. Content managers can associate presentations with “related” presentations and can link supporting files with a presentation.

In this solution, Content Managers are a different set of users than Content Consumers. As it stands, the solution doesn’t accomodate user-contributed presentations, unlike SlideShare. Obviously, it could be customized to do that.

Here’s what it looks like when a Content Manager edits the metadata for a particular presentation (click the image for full-size):

DeckShare Manage Details Screenshot

Those familiar with Alfresco can tell from the screenshot that Content Managers use Alfresco Share as the “content administration” user interface. Optionally, you could turn on Alfresco’s Web Editor Framework and allow Content Managers to edit the site in-context, but that will require some minor tweaking if you go that route. Using Share for content administration works really well. What started out as a team collaboration web app has essentially turned into Alfresco’s uber client.

Now let’s take a look at the Content Consumer user interface:

DeckShare Home Screenshot

If you’ve seen either of the sample Web Quick Start applications, the layout will look familiar. The home page includes a featured content carousel, a recently added document list, and a document category tree. We’re using a different carousel widget than the Web Quick Start sample apps and the category tree is also something we’ve added.

The set of categories is almost completely arbitrary and can be managed by DeckShare administrators. In fact, if you are running DeckShare on top of an existing Alfresco repository, you can specify the subset of categories you want to show in the category tree. When you click a specific category, the resulting page looks like this:

DeckShare Category Page Screenshot

The category page shows only the presentations for a specific category and features the same category tree browser that appears on the home page.

Ultimately, an end-user will either download a presentation or they’ll click on the details page link to learn more. The details page, shown below, shows high-level metadata about the presentation, supporting files that accompany the presentation, related presentations, and a flash-based document preview. The flash-based preview allows end-users to browse the presentation without downloading the entire file.

DeckShare Presentation Details Screenshot

That’s really it from a Content Consumer perspective. The site also has full-text search and that page is very similar to the category list page.

From a Content Manager’s point of view, DeckShare, like all Web Quick Start sites, is built on concepts familiar to anyone who has built or managed a web site: A site consists of collections of assets that get categorized and tagged and then presented in various ways across one or more pages. The look-and-feel of the end-user web site can be completely customized to match client branding needs. And, both the metadata model and category hierarchy can be extended to support specific client requirements.

Assets are stored in Alfresco’s Document Management repository and managed through the Alfresco Share User Interface. Alternatively, Content Managers have several other options for getting presentations into the repository, including FTP, drag-and-drop via Windows Explorer or Mac Finder, emailing content into the repository, drag-and-drop from within Microsoft Outlook or Lotus Notes, or saving directly from Microsoft Office as if the repository were a Microsoft SharePoint Server. Regardless of how the files arrive, Alfresco automatically takes care of creating thumbnails and PDF renditions of the presentations.

What is Web Quick Start?

Web Quick Start is a sample web application built with Spring, Spring Surf, and Apache Chemistry’s OpenCMIS library. It is essentially a sample web application that sits on top of the Web Quick Start API (Java), some presentation tier services, some repository tier services, and an extended content model.

Assets are stored in Alfresco’s Document Management repository and managed through the Alfresco Share User Interface. That means you can use all of the familiar building blocks present in the repository such as custom types and aspects to model your data, behaviors, and web scripts.

The presentation tier uses Alfresco Surf to lay out pages and to define regions on those pages. Regions get their content from presentation tier web scripts. What’s different with Web Quick Start as opposed to previous Surf-based web application examples is the use of the Apache Chemistry OpenCMIS library. Instead of using Surf’s object dispatcher to load and persist objects, the Web Quick Start API uses OpenCMIS to make CMIS requests between the front-end and the repository tier. There are some places where the Web Quick Start API uses non-CMIS web scripts, so it is not a pure CMIS implementation, however.

The Web Quick Start API is exposed to the Alfresco JavaScript API and Freemarker API on the presentation tier, so everything you’ve already learned about Spring Surf is immediately leverageable when you build the front-end. However, if you’ve decided on another framework, you can still use the Web Quick Start API, the services, the content model, and Share for editing content. For example, Metaversant recently worked with a client that chose Spring 3 and Apache Tiles for the front-end because that was their standard, but they used Web Quick Start for everything else from the API, back.

Web Quick Start sites have a flexible deployment configuration which can be boiled down to “single-server” or “multi-server”. In the single-server approach, the same Alfresco server is used for content authoring and content serving whereas in the multi-server approach, Alfresco’s transfer service is used to move content from the “authoring” or “editorial” web server to the “Live” server (it doesn’t have to be one hop, you could throw in one or more “QA” servers as well if you want to, for example).

High-level steps

Web Quick Start is meant as a starter application. It’s functional out-of-the-box, but you’re expected to use as much (or as little) of it as you need. Here are the high-level steps we took to reshape the starter app into DeckShare.

Step 1: Extend the content model

Web Quick Start has a simple content model that provides for articles, images, and user feedback. For DeckShare, we added two new aspects to our own model. One is used to associate a presentation with zero or more related presentations. The other is used to associate a presentation with zero or more supporting files (like source code downloads). At some point we may also add an aspect to track fine-grained event metadata such as session time, speaker, etc. Extending the model with your own aspects is pretty easy–it’s some XML to define the model and then some XML to expose the model to the Share interface.

Step 2: Set up site sections and collections

Web Quick Start has a default folder structure that lives in the Document Library of the Share site being used to manage the content. Within that there is one folder for editorial content and one for live content. Then, it breaks down into “section” folders for site assets (publications, in this case) and collections. Each section will typically map to a section of a site and will therefore show up in the site navigation, but you can exclude sections from the navigation.

Every section folder has a set of collections. A collection is an arbitrary grouping of site assets. Collections can either be static or query based. For a static collection, Content Managers choose the assets that belong in that section with standard Share “picker” components. For a query-based collection, Content Managers can use either CMIS Query Language or Lucene to define queries that identify the assets that are included in the collection. Either way, from the Web Quick Start API, a developer just says, “Give me this collection and let me iterate over the assets in it” to produce a list of the assets in a collection.

There are two sample data sets that ship with Web Quick Start. One is for a Finance example site and the other is for a Government site. We started with the Finance site (the choice was based on luck–there’s really not much of a difference between the two other than images and content). Once we imported the sample site, we deleted all of the sample content and then tweaked the collection definitions. The “latest” collection, for example, contains the most recently-added presentations. The “featured” collection is static out-of-the-box, but we wanted it to be dynamic. So, we simply edited the collection metadata to add a query that returns all of the presentations that have been categorized as “Featured”. Alfresco runs the query periodically so that Content Consumers don’t take the performance hit when the page is rendered.

The carousel works similarly. We wanted Content Managers to be able to specify which presentations appear in the carousel simply by applying the “Carousel” category to the content from within Share, so the carousel collection looks for content that has that category applied.

The other tweaks we made to the sample data set include telling Web Quick Start which rendition should be used for the various thumbnails in the site. We added a new rendition definition for the images shown in the carousel and a new rendition for the thumbnails used everywhere else. Web Quick Start has its own rendition definitions, but the thumbnails aren’t set to maintain the aspect ratio when they are resized and that looks a little weird for images of thumbnail presentations, hence the need for our own.

Step 3: Customize page layout

Once we had some sample data in place and our collections defined, it was time to start laying out the pages. As luck would have it, the requirements matched up fairly closely to the layout of the sample financial site. Surf pages and templates are used for layout, but you don’t have to be a Surf Guru to make changes. Surf templates are just FreeMarker, after all. Other than minor re-arranging, our template modifications were limited to adding additional regions to existing templates.

Once you define your page layouts, you use metadata on the section folders to tell Web Quick Start which page layout to use for a given piece of content. The mapping is type-based. For a given section, you might say, “All instances of ws:indexPage in this section should use the ‘list’ template” which is expressed like this:

ws:indexPage=list

The template mapping is hierarchical. That means for a given piece of content, Alfresco will look at that content’s section for the template mapping but if it isn’t specified, it will look in that section’s parent, and so on. So if we specify:

cmis:document=publicationpage1

in a high-level section folder, all instances of cmis:document in child sections will be layed out using publicationpage1 unless it is overridden by a child section.

Note: If you are familiar with Surf, don’t be confused by the use of the word “template” here. It’s used by Web Quick Start in a generic sense. In the example above, “list” and “publicationpage1” are actually page data objects in Surf. For the Metaversant client that used Spring 3 and Tiles, for example, the template mapping specified which Tile definition to use.

Step 4: Add custom components

We spent most of our time on components. In Surf, components are implemented as web scripts. A web script implements the Model-View-Controller (MVC) pattern. In this case, controllers are JavaScript. Here’s what one of the controllers looks like:


model.articles = collectionService.getCollection(context.properties.section.id, args.collection);

if (args.linkPage != null) 
{
	model.linkParam = '?view='+args.linkPage;
}

This one is simply grabbing a collection of articles and a parameter and sticking them on the model for the FreeMarker-based view to pick up. Behind the scenes, the Web Quick Start API is making RESTful calls to the repository to retrieve (and cache) objects. This is a typical controller–in this app, most of the controllers are less than 10 lines long.

Web Quick Start already has components for different types of content lists. So doing something like the carousel was relatively easy: The collection service returns the “carousel” collection and a FreeMarker template dumps the collection metadata into a list that the YUI carousel control can grok.

We had a couple of places where we had to write our own components. One was the Categories component and another was the Related Presentations component. The Categories component is rendered using a YUI tree control. It gets its data by invoking a Surf-tier web script which, in turn, invokes a repository-tier web script that returns a list of category metadata as JSON. YUI then styles the data as a tree.

The Related Presentations component similarly invokes a repository-tier web script, but its JSON contains only node references. It then asks the Web Quick Start API to convert those into CMIS objects. That allows us to take advantage of the cache if the object has been loaded before, and it means we can re-use the Web Quick Start view templates that already know how to format lists of CMIS objects.

But wait, there’s more

Web Quick Start also has a user feedback mechanism that you can use for comments, “contact us” forms, and, at some point, ratings, but none of that was a requirement for this solution at the time we built it. The capability is there, so we’ll probably expose it at some point. Refer to the wiki for more information on the user feedback functionality.

There’s also a workflow that is used to submit content for review. Once approved, the content is queued up for publishing to the live site. The workflow is the same jBPM engine you are probably already familiar with so the process can be modified to fit your needs.

Although it is a new product and there are still a few hitches here and there, I was happy with Web Quick Start and the time it saved for building a site like this. I’m looking forward to seeing its continued evolution.

DeckShare is a simple site. There is a lot more that could be done with it and, based on client demand (or contributions from others, hint, hint), new features will be added over time. I think it’s a good example of what you can do quickly with Web Quick Start.

Hopefully, this write-up gave you some ideas you can use on your own projects. If you want to dive deeper into the Web Quick Start web application, check out the Web Quick Start Developer Guide on the Alfresco wiki. Feel free to grab the DeckShare source from Google Code and use it on your own projects.

If you’re interested in major customizations to DeckShare or you have a project that might be a fit for Alfresco Web Quick Start, let me know.

Monitoring folders with Alfresco workflows

This is the second part of a two-part post on some recent work Metaversant did with Alfresco workflows. The first part was a post on Workflow Reporting. It outlined a high-level recipe for creating a workflow dashboard in Share that showed a list of workflows started for a specific Share site and allowed bulk actions (such as “cancel”). In this post, we’ll look at Folder Monitoring which deals with how to automatically start an Alfresco jBPM workflow when a document is dropped into a folder.

The easy answer

The embedded jBPM workflow engine that’s embedded in Alfresco is flexible and powerful. Creating a new process and wiring it into the Alfresco Explorer or Alfresco Share user interface is straightforward once you’ve done it a time or two. If you need a refresher on the details, see “Get your Alfresco ‘flow on“. For the purposes of this discussion, just know that your process definition can have process variables which you can read and set from the user interface and from code within the process definition.

It’s actually really easy to start a workflow when objects are created or updated in a folder. That’s because the Alfresco JavaScript API can run the “start-workflow” action, and Alfresco JavaScript can be invoked from a rule that runs when something is updated in a folder. The JavaScript to start a workflow using this approach looks like this:

var startWorkflowAction = actions.create("start-workflow");
startWorkflowAction.parameters.workflowName = "jbpm$wf:adhoc";
startWorkflowAction.parameters["bpm:assignee"] = assignee;
startWorkflowAction.parameters["bpm:workflowDescription"] = description;
startWorkflowAction.execute(document);

The catch is that when you use that approach, the developer writing the JavaScript has to know at design-time what values to provide to the workflow when it starts up (in this case, the assignee and the description). Ordinarily, when a workflow is manually invoked, the end-user starting the workflow is there to provide those values. If your particular workflow doesn’t require any variables to start, or the variables are known at design-time, the simple rule-invokes-JavaScript approach will work. Otherwise, something more is required.

What we needed for this client was not only the ability to start a workflow when a new object landed in a folder, but also the ability for an end-user to specify parameters for that workflow ahead of time. When discussing the functionality we called it “precompiled workflows” and “workflow templates”, which is pretty descriptive of what we needed. From the user’s perspective, we needed one user (let’s call her a Manager) to be able to say, “When an object is created in this folder, launch this specific workflow with these parameters”. When other users (or systems) create objects in that folder, the workflow needs to launch automatically without further input.

Options considered

As usual, there are a few different ways to go about this. One is the rule-invokes-JavaScript approach discussed earlier. The problem with this is that the parameters have to be specified in the JavaScript and that won’t work for non-technical end-users. This option was discarded early.

The next option we considered was creating a custom action. This almost gets us there. The Manager user can create a rule on a folder and select the custom action. The form service (Share was the main UI in this case) can be configured to let the Manager set the parameters to use when launching the workflow. Non-Manager users can then create objects and workflows will launch automatically.

The problem with this approach is that the list of parameters is not finite–this client had big plans for the workflow engine and they did not want to modify the custom workflow launching action every time they created a workflow that had a new parameter. Similar to the first option, this approach has worked well in the past, but it didn’t fit for this client, so we moved on.

The third option we looked at was a variation on the second. Rather than having the action handler responsible for grabbing parameter values, this approach uses the workflow model itself to persist a “workflow configuration” that the action can point to. The Manager would create a workflow configuration, then configure the rule to say, “When documents are added to this folder, start this workflow with this configuration”.

The workflow configuration could be a custom object. Briefly, we considered actually persisting objects that correspond to the types defined in the workflow model (normally, those aren’t saved anywhere), and I think if we ever revist this option, we may look at that again.

The problem with this approach was that the Manager has to think too much. Am I creating a workflow that’s going to launch other workflows? Okay, then I need to create a “workflow configuration” and configure a rule. Am I just routing something through a workflow? Okay, then I need to use “start workflow” like I normally would. That’s way too confusing. Next!

Implementation

Ultimately, we decided that the easiest route from both an implementation perspective and an end-user perspective was to rely on the business process to be smart enough to tell the difference between a package with a folder and a package with documents. When the workflow is run on a folder, it can iterate over the children of the folder, spawning new workflows and copying its process variables into the newly started workflows. It can then transition to a wait state until something tells it to go check for new children in the folder. When the same workflow is run on a document however, it proceeds down the “non-folder” route and performs the work it normally would.

Using this approach, every workflow is able to run as both a “folder monitor” and a “worker”. That way, when a Manager starts a workflow, she doesn’t have to think about whether she’s starting a “monitor” workflow or a one-time workflow, she just starts the workflow as normal and sets the parameters. The business process does the work of spawning additional workflows when it needs to and passes those parameters along. Now we’re talking!

High-level Recipe

Similar to my previous post on workflow dashboards, I may make this source available at some point, but until then, here are the high-level steps to do it yourself.

Create the jBPM process definition

This will work with any process definition, so I won’t describe anything business-specific here. Instead, I’ll talk about what you would add to your process definition to make this work.

The first thing the business process needs to do is make a decision: Am I running against a folder or a document? If the package contains documents, the workflow continues as it normally would. If, however, it contains a folder, the workflow iterates over the folder’s children and starts a new workflow instance for every child in the package, copying its process variables into the new workflows.

The decision is implemented as JavaScript. If we find one folder, we take the folder route. In this case, the users are only going to run the workflow on one folder at-a-time so we don’t have to worry about what to do if the workflow package contains a mix of documents and folders. The decision JavaScript looks like this:

var flag = false;
for (var i = 0; i < bpm_package.children.length; i++) {
    if (bpm_package.children[i].isContainer) {
        flag = true;
        break;
    }
}
isContainer = flag;

And the transitions for the decision look like this:

<transition to="forkWork" name="toForkWork"></transition>
<transition to="forkMonitor" name="toForkMonitor">
    <condition>#{isContainer == true}</condition>
</transition>

The forkMonitor node is a fork that creates a workflow dashboard task (see previous post) and simultaneously transitions to the spawnWorkflows node. The spawn workflows code is a little too lengthy to include here, but what it does is:

  • Grabs the parameters it needs to pass in to each of the newly started workflows
  • For each document in the workflow package…
  • Checks to make sure the document hasn’t already been processed (more on that later)
  • Checks to make sure the document isn’t already in a workflow
  • Starts the workflow using the out-of-the-box start-workflow action (see the code at the start of the article)

Once the workflows are spawned, the business process transitions to a wait state where the process sits indefinitely until it is told to check the folder for new children.

Create a custom action that will tell the process definition to check for children

How does the workflow know when new children have been added to the folder? I’m so glad you asked. After the workflow spawns new workflows for the children, it transitions to a wait state. To trigger the workflow to move off the wait state, we used a custom rule action. The rule action is set high enough up the folder hierachy that end-users don’t have to worry about it–it automatically inherits onto the folders created below it. The rule action is Java-based, and it takes two parameters: The name of a node and the name of a transition to take.

When a new document is added to a folder, the rule triggers the action. The action grabs the node’s parent and checks to see if it is involved in a workflow. If it is, it tries to find the workflow node named in the parameter, which will be the wait state mentioned in the previous step. If it finds that, it signals the node to take the specified transition. The transition will be to the “spawn workflows” node.

Workflow screenshotThe combination of the wait state and the spawn workflows node in the business process with the custom rule action that signals the wait state creates a cool little “interrupt” loop: The process spawns workflows for folder children, then waits until more children arrive, then spawns workflows for those children, and so on until someone kills the workflow.

Customize the Share user interface to allow workflows to start on folders

Since the dawn of time Alfresco’s UI has not allowed workflows to start on folders, but the workflow engine can handle it. For this approach to work we most definitely have to be able to start workflows on folders. That’s a pretty simple little config tweak to make that happen in Share–just copy the existing assign workflow action link from the document actionSet to the folder actionSet in documentlist.get.config.xml (and document-actions.get.config.xml), like this:

<actionSet id="folder">
    ...
    <action type="action-link" id="onActionAssignWorkflow" permission="permissions" label="actions.document.assign-workflow" />
    ...
</actionSet>

Voila! Now you can run workflows against folders.

Create a “workflow status” aspect to avoid processing docs more than once

The last step is to make sure that documents only run through the process once. Otherwise, every time the process spawns workflows for children in a folder, he’ll start one up for every child in the folder, regardless of whether or not its been through the workflow already. This may be what you want, but this particular client wanted docs to run through the process only once.

To do this, we created a simple aspect with a “workflow status” property. In the last node of the process, the property gets set. When the spawn workflows code runs, it filters out folder children that have the status set.

That’s it!

This approach puts the burden on the workflow designer to use some standard node names and logic in their process definitions. And, it will result in many in-flight workflows (at least one for every folder being monitored), although that shouldn’t be a big deal from a performance perspective (running workflows really aren’t “running”).

The important thing for this client is that it provides a nice way for users to essentially “pre-configure” workflows so that subsequent users can start workflows simply by adding documents to a folder, all without anyone having to learn any new “workflow configuration” constructs. And, workflow designers can easily make their workflows “folder aware” or “templatable”, depending on how you want to look at it, all within the process definition, without having to recompile any custom actions or tweak JavaScript.

Workflow Dashboards in Alfresco Share

Metaversant recently had a client with some interesting requirements around workflow. I thought I’d post what we did here and get a conversation going about the various pluses and minuses of the approach and find out what others have done when faced with similar needs.

There are two main buckets of requirements I want to focus on: Workflow Reporting/Dashboard and Folder Monitoring. I’ll talk about Workflow Reporting/Dashboard in this post and Folder Monitoring in the next.

Workflow Reporting/Workflow Dashboard

Workflow Reporting is something I’ve seen quite often and handled differently each time based on what the client is trying to do. Alfresco is pretty sparse on Workflow Reporting (capturing the data and making it easy to report on) and Workflow Dashboarding (presenting a dashboard of running workflows and/or workflow reports in the user interface). By “sparse” I mean there really is none. Recent releases have seen the addition of the “My Tasks” page, but that is limited to what it sounds like: A page listing the tasks the current user is assigned to.

What most people want when they ask for Workflow Reporting is the ability to capture workflow data both before and after a workflow has completed. This is significant because if you do nothing about it, data about running workflows disappears into the ether when the workflows complete. A Workflow Dashboard is the ability to see all workflows assigned to all users or a subset of users and perhaps some historical via Workflow Reports (maybe time started, current task, time on current task, current actor, etc.).

For this particular project, my client really only cared about running workflows, so we didn’t have to worry about capturing workflow stats before the workflow ended–they just wanted to see all workflows, no matter who started them, in a sortable list with a link to the workflow details and the ability to perform batch operations against the workflows (such as selecting all workflows and canceling). The twist, however, was that the client wanted to scope the list of running workflows to the Alfresco Share site they were started in. So if there were two Share sites, A and B, and Site A’s users had started 24 workflows on documents stored within the site while Site B’s users (which may overlap with Site A) had started 35 workflows on Site B documents, Site A’s Workflow Dashboard should show a list of 24 workflows while Site B’s should show 35.

The Solution

When workflow data needs to be persisted beyond the life of the workflow, we’ll typically just create some objects in the content model to persist the data and we’ll write to those objects from one or more actions defined within the business process definition. In this case, that wasn’t necessary.

The problem boiled down to how to capture the specific Share site a workflow was scoped to and, then, how to query for and display that information. Once that was resolved, the data could be displayed on a custom Share page.

I may post the code at some point, but for now, here’s the high-level recipe:

Step 1: Capture the Site ID in a Process Variable

Alfresco jBPM workflows have process variables that can store metadata about a running workflow. And, the workflow API allows me to query against that metadata. So, the first step was to capture which Share site the user was in when they launched the workflow.

To do this, I used the Form Service to define a hidden field on my workflow’s startup form. Then, I overrode Alfresco’s client-side JavaScript StartWorkflow component to add my own code that finds the hidden field and sets it with the Share site’s unique identifier (the Site ID field).

Initially, I used a straight hidden field for this. Later, I came back and created a new custom component that included not only the hidden field, but some additional markup and client-side logic that pulled back additional context about the Share site for that workflow so that when someone viewed the workflow or managed a task, they would know more about the Share site than just its Site ID.

Step 2: Create a web script that returns the workflow metadata

With the Site ID stored in a process variable, the next step was getting the workflow data to the front-end Share tier so it could be displayed in a dashboard. This involved creating a repository tier web script that accepted the Site ID as an argument and returned the data as JSON. There are some out-of-the-box web scripts related to workflows, but they return tasks assigned to the current user and for this I needed all running workflows for a given site ID, so that required a custom web script.

The JavaScript API has come a long way with respect to workflow, but the ability to apply a filter on task metadata isn’t there yet, so that meant my controller had to be Java-based.

The interesting part of that web script controller looks like this:

WorkflowTaskQuery tasksQuery = new WorkflowTaskQuery();
Map<QName, Object> processCustomProps = new HashMap<QName, Object>();
processCustomProps.put(SomeCoWorkflowModel.PROP_RELATED_SITE_ID, siteId);
tasksQuery.setProcessCustomProps(processCustomProps);
tasksQuery.setTaskName(SomeCoWorkflowModel.TYPE_DASHBOARD_TASK);
tasksQuery.setTaskState(WorkflowTaskState.IN_PROGRESS);
List<WorkflowTask> tasks = workflowService.queryTasks(tasksQuery);

This gives us all of the tasks that have the Site ID we’re looking for, but the Dashboard needs more than that–it needs the Workflow Instance for full context. No problem–the Workflow API can handle it. Here’s where the controller iterates overs the tasks and adds the workflows to a List of WorkflowMetadata objects that will get set on the web script’s model:

for (int i = startIndex; i < endCount; i++) {
WorkflowTask task = tasks.get(i);
WorkflowInstance wf = workflowService.getWorkflowById(task.getPath().getInstance().getId());
workflows.add(new WorkflowMetadata(wf, task));
}

One potential gotcha with this approach is that there has to be a task assigned to an actor in order for the workflow to show up in the WorkflowTaskQuery results. If a workflow were sitting on a wait-state, for example, that workflow wouldn’t be returned by the code above. To work around this, the workflows in this solution always queue up a “Dashboard Task” assigned to the initiator to guarantee that all workflows, whether they are currently sitting on a task node or not, always show up in the workflow dashboard.

The view for this web script simply returns the data as JSON, so I’ll spare you the details.

The other web script I wrote for this piece deletes workflows for a given set of workflow IDs. You’ll see where that comes in next, but, again, the logic of that controller (also Java-based) is very straightforward, so on to the next step!

Step 3: Create a custom Workflow Dashboard page

The workflow tasks are tagged with Share Site IDs and a repository-tier web script is in place that knows how to find those tasks and give back the Workflow Instance data as JSON. The final step is to render that as a dashboard. For this, I used standard Surf framework techniques to create a new page called “Workflows”. The page contains a client-side JavaScript component that renders a YUI DataTable. The data source for the DataTable is the web script created in the previous step.

Step 4: Create actions

The specifics for what someone might want to do to one or more workflows displayed in the dashboard varies. For this project, users needed to be able to view the workflow details. Initiators needed to be able to cancel the workflow. Viewing the workflow details is just a matter of building the right URL. Canceling the workflow is a little more involved–I used client-side JavaScript to make repo-tier web script calls to a custom web script that can cancel one or more workflows given the workflow IDs.

To make it so that only workflow initiators can cancel a workflow, I use the same mechanism that document actions uses: The XML configuration file that defines the cancel workflow action specifies that the user must be the workflow initiator. Then, the client-side JavaScript that builds the dashboard actions checks the workflow data to see if that’s the case and hides the link if the current user is not the initiator.

Here’s the XML for the cancel workflow action:
<toolbar>
<actionSet>
<action type="action-link" id="onActionCancel" permission="initiator" label="menu.selected-items.cancel" />
</actionSet>
</toolbar>

The client-side code that checks action permissions is a direct copy of Alfresco’s out-of-the-box logic that does the same.

The Result

Once fully-assembled, the workflow dashboard looks like this:

Workflow dashboard screenshot

In the screenshot, I’ve got multiple workflows selected and have clicked the “Selected Workflows…” link to show that you can cancel more than one workflow at-a-time.

Now you’ve seen a simple workflow dashboard implementation. My next post will be about launching workflows automatically when objects are dropped into a folder.

Does Alfresco Share need to go on a diet?

When Alfresco first told me about the Surf framework and the plan to build a new then unnamed collaborative client on top of Surf I liked the sound of it. Of course anything other than JavaServer Faces sounded pretty good at the time.

But things didn’t quite turn out the way I thought they would.

See, what I thought would happen was that Alfresco would release a bunch of “mini” clients–highly-specialized apps for the task at hand. Want RM? Here’s the RM client. Doing some team stuff? Here’s Share. Basic Document Management, here’s the DM client. Web Content Management. Digital Asset Management. You get the point. With all of these sitting on top of Surf, each client app would only have the code that made it unique for that particular use case. It’s like taking one Ritz cracker (Surf) and then having a veritable smorgasbord of delicious ECM toppings to choose from.

The Dagwood SandwichInstead, what’s happened is that Alfresco launched their first Surf-based client, Share, for team collaboration, and then, rather than go back to the platter for another cracker, they kept piling on and piling on until that once dainty hors d’oeuvre became a towering Dagwood sandwich.

Let’s face it: Clients love the Share interface. They love it so much they want all of their content-centric apps to be based on it. If the client wants basic customizations–some form tweaks, a new dialog here, a new page there–it isn’t so bad. But the more complex the changes are, the more cruft you have to sift through and either eliminate or work around. A quick perusal through the Share code will turn up tidbits that deal with Records Management, SharePoint, and Google Docs. All of these are optional add-ons to Alfresco, but have worked their way into the Share client “just in case” someone installs that extension.

Okay, so if Share has too much to serve as an agile base in some cases, why not drop down to the underlying Surf framework? Because sometimes, Surf can be too bare bones. Recently, I did an implementation for a client that was essentially a community solution. We used two customized versions of Share: One for the “admin” interface for the community and the other for the front-facing community itself. Share worked great for the admin interface–not much tweaking was needed there at all. The dashboard, document library, wiki, discussion, and data lists functionality all made sense in the context of administering content. The front-facing community, however, was another story. We didn’t need 80% of what was in Share out-of-the-box. But we didn’t drop down to Surf because we wanted blogs, discussions, and some of the Share-tier web scripts for data lists and whatnot. We knew gathering up all of the dependencies needed to “push down” those features into Surf would be a pain. The solution turned out great, but the ratio of used to unused code is kind of scary.

Alfresco seems too far down the every-new-feature-we-come-up-with-goes-into-Share path at this point. But I wonder if the concept of a “distribution” could apply to Share. This would mean stripping down Share to some sort of bare bones minimum, just slightly bulkier than raw Surf. Then, provide AMPs or Maven builds or scripts or something that developers can use to “build up” Share with only the functionality they need.

Or maybe the solution is to make things that are optional, truly optional. It would be nice, if, through a script or this “tear down, then build up” approach, you could completely remove things like:

  • Sharepoint integration
  • Google Docs integration
  • Records Management
  • Wiki
  • Blogs
  • Discussion
  • Links
  • Anything else that’s not about the document library, data lists, categories, tags, and search.

By “completely remove” I don’t mean “hide from the user”. I mean when I recursively grep the Share web app for “Sharepoint” (for example) I get zero hits.

The goal here is to cut way down on the amount of code developers have to sift through, override, and extend when starting with Share as a base. And, once deployed, reduce the amount of code that has to be maintained and upgraded going forward.

Maybe Alfresco should take a lesson from Drupal. Some would argue that the core of Drupal is already too big, but at least the majority of extensions are in (truly) optional modules. And there are a number of Drupal distributions that take core and bundle different sets of modules for specific use cases. Django has something similar with the pinax project.

What do you think? Am I just being a picky eater? Is it realistic to think that Alfresco can whittle Share down to a more suitable base for the rest of us to build on?

Book Review: Alfresco 3 Web Services

I’ve just finished reading Alfresco 3 Web Services, by Ugo Cei and Piergiorgio Lucidi, which Packt sent me to read and comment on.

Alfresco 3 Web Services is meant for developers with a very specific focus: Remotely talking to Alfresco. That might mean communicating via SOAP-based Web Services, RESTful web services (Web Scripts), or either protocol through CMIS. Whichever you choose, Ugo and Piergiorgio have you covered. I really like that the authors set out to write such a focused piece and stuck to it–it allows them to go deep on their topic and keeps the chapter length and total book length digestable.

The book is written very clearly and follows a logical progression. It starts out with SOAP-based services (first 5 chapters), including a chapter on .NET, and then moves on to web scripts (3 chapters). After that, the authors discuss AtomPub, which is an interesting, but not critical, background for the remaining 5 chapters of the book which focus on CMIS.

The discussion on web scripts covers both Java and JavaScript controllers, but JavaScript definitely gets more attention. Something developers new to the platform will find helpful is the chapter on FreeMarker. Most of Alfresco’s documentation and the books that are out there (including mine) relegate the FreeMarker API to appendices or just show examples and assume you’ll look up details later when you need it. Because it is typically such a key component of web scripts and other aspects of Alfresco, it was a good call to include it in the book.

The book comes with several small examples and a couple of tie-it-together examples. None of it runs out-of-the-box without some tweaking which isn’t a surprise given how rapidly things are changing in this area, particularly with regard to CMIS. At the time the book was written, OpenCMIS, the Java API for CMIS available as part of Apache Chemistry, had not been officially released. As I write this, the Chemistry team is about to release their second tagged build. The differences aren’t significant enough to cause confusion–most readers will be able to fidget with the import statements and the other changes required to get the sample code running.

I thought there was a little too much time devoted to SOAP-based Web Services, but that’s just personal preference and the fact that nearly all of my clients over the last four years have gone the RESTful route. The authors note that others may have the same preference and they make it easy to skip over those chapters if the reader wants to.

Although the chapters logically progress and build on each other, the code samples don’t–for the most part, each chapter’s code samples are self-contained. For example, I thought it was kind of strange that the code built in Chapter 13 for the CMIS Web Services binding examples isn’t used in Chapter 14 to build the CMIS Wiki example.

Many Alfresco implementation teams are divided into at least back-end and front-end teams and when the project is large enough, you can definitely have people focused on the middle. This book is perfect for that middle-ware team or for anyone who’s got a handle on the back- and front-ends and just needs to learn how to stitch them together. Nice job, Ugo and Piergiorgio.